

TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

(continued after index)

TEXTS IN COMPUTER SCIENCE

Apt and Olderog, Verification of Sequential and Concurrent
Programs, Second Edition

Alagar and Periyasamy, Specification of Software Systems

Back and von Wright, Refinement Calculus: A Systematic
Introduction

Beidler, Data Structures and Algorithms: An Object-Oriented
Approach Using Ada 95

Bergin, Data Structures Programming: With the Standard
Template Library in C++

Brooks, C Programming: The Essentials for Engineers and
Scientists

Brooks, Problem Solving with Fortran 90: For Scientists and
Engineers

Dandamudi, Fundamentals of Computer Organization and Design

Dandamudi, Introduction to Assembly Language Programming:
For Pentium and RISC Processors, Second Edition

Dandamudi, Introduction to Assembly Language Programming:
From 8086 to Pentium Processors

Fitting, First-Order Logic and Automated Theorem Proving,
Second Edition

Grillmeyer, Exploring Computer Science with Scheme

Homer and Selman, Computability and Complexity Theory

Immerman, Descriptive Complexity

Jalote, An Integrated Approach to Software Engineering, Third
Edition

Toshinori Munakata

Fundamentals of the New
Artificial Intelligence

Neural, Evolutionary, Fuzzy and More

Second Edition

Toshinori Munakata
Computer and Information Science Department
Cleveland State University
Cleveland, OH 44115
USA
t.munakata@csuohio.edu

ISBN: 978-1-84628-838-8 e-ISBN: 978-1-84628-839-5
DOI: 10.1007/978-1-84628-839-5

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007929732

© Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the
Copyright, Designs and Patents Act of 1988, this publication may only be reproduced, stored or transmitted, in any
form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction
in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant laws and regulations and therefore free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in
this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

 Preface

This book was originally titled “Fundamentals of the New Artificial Intelligence:
Beyond Traditional Paradigms.” I have changed the subtitle to better represent the
contents of the book. The basic philosophy of the original version has been kept in
the new edition. That is, the book covers the most essential and widely employed
material in each area, particularly the material important for real-world applications.
Our goal is not to cover every latest progress in the fields, nor to discuss every
detail of various techniques that have been developed. New sections/subsections
added in this edition are: Simulated Annealing (Section 3.7), Boltzmann Machines
(Section 3.8) and Extended Fuzzy if-then Rules Tables (Sub-section 5.5.3). Also,
numerous changes and typographical corrections have been made throughout the
manuscript. The Preface to the first edition follows.

General scope of the book

Artificial intelligence (AI) as a field has undergone rapid growth in diversification
and practicality. For the past few decades, the repertoire of AI techniques has
evolved and expanded. Scores of newer fields have been added to the traditional
symbolic AI. Symbolic AI covers areas such as knowledge-based systems, logical
reasoning, symbolic machine learning, search techniques, and natural language
processing. The newer fields include neural networks, genetic algorithms or
evolutionary computing, fuzzy systems, rough set theory, and chaotic systems.
 The traditional symbolic AI has been taught as the standard AI course, and there
are many books that deal with this aspect. The topics in the newer areas are often
taught individually as special courses, that is, one course for neural networks,
another course for fuzzy systems, and so on. Given the importance of these fields
together with the time constraints in most undergraduate and graduate computer
science curricula, a single book covering the areas at an advanced level is desirable.
This book is an answer to that need.

Specific features and target audience

The book covers the most essential and widely employed material in each area, at a
level appropriate for upper undergraduate and graduate students. Fundamentals of
both theoretical and practical aspects are discussed in an easily understandable

vi Preface

fashion. Concise yet clear description of the technical substance, rather than
journalistic fairy tale, is the major focus of this book. Other non-technical
information, such as the history of each area, is kept brief. Also, lists of references
and their citations are kept minimal.

 The book may be used as a one-semester or one-quarter textbook for majors in
computer science, artificial intelligence, and other related disciplines, including
electrical, mechanical and industrial engineering, psychology, linguistics, and
medicine. The instructor may add supplementary material from abundant resources,
or the book itself can also be used as a supplement for other AI courses.

 The primary target audience is seniors and first- or second-year graduates. The
book is also a valuable reference for researchers in many disciplines, such as
computer science, engineering, the social sciences, management, finance, education,
medicine, and agriculture.

How to read the book

Each chapter is designed to be as independent as possible of the others. This is
because of the independent nature of the subjects covered in the book. The
objective here is to provide an easy and fast acquaintance with any of the topics.
Therefore, after glancing over the brief Chapter 1, Introduction, the reader can start
from any chapter, also proceeding through the remaining chapters in any order
depending on the reader's interests. An exception to this is that Sections 2.1 and
2.2 should precede Chapter 3. In diagram form, the required sequence can be
depicted as follows.

 the rest of Chapter 2
 Sections 2.1 and 2.2
 Chapter 3
 Chapter 1 —— Chapter 4
 Chapter 5
 Chapter 6
 Chapter 7

The relationship among topics in different chapters is typically discussed close to
the end of each chapter, whenever appropriate.
 The book can be read without writing programs, but coding and experimentation
on a computer is essential for complete understanding these subjects. Running so-
called canned programs or software packages does not provide the target
comprehension level intended for the majority of readers of this book.

Prerequisites

Prerequisites in mathematics. College mathematics at freshman (or possibly at
sophomore) level are required as follows:

Chapters 2 and 3 Neural Networks: Calculus, especially partial differentiation,
concept of vectors and matrices, and
elementary probability.

Preface vii

Chapter 4 Genetic algorithms: Discrete probability.

Chapter 5 Fuzzy Systems: Sets and relations, logic, concept of vectors
and matrices, and integral calculus.

Chapter 6 Rough Sets: Sets and relations. Discrete probability.

Chapter 7 Chaos: Concept of recurrence and ordinary
differential equations, and vectors.

Highlights of necessary mathematics are often discussed very briefly before the
subject material. Instructors may further augment the basics if students are
unprepared. Occasionally some basic mathematics elements are repeated briefly in
relevant chapters for an easy reference and to keep each chapter independent as
possible.
 Prerequisites in computer science. Introductory programming in a conventional
high-level language (such as C or Java) and data structures. Knowledge of a
symbolic AI language, such as Lisp or Prolog, is not required.

 Toshinori Munakata

 Preface .. v

1 Introduction ... 1

1.1 An Overview of the Field of Artificial Intelligence 1
1.2 An Overview of the Areas Covered in this Book 3

2 Neural Networks: Fundamentals and the Backpropagation Model 7
2.1 What is a Neural Network? ... 7
2.2 A Neuron ... 7
2.3 Basic Idea of the Backpropagation Model .. 8
2.4 Details of the Backpropagation Mode ... 15
2.5 A Cookbook Recipe to Implement the Backpropagation Model 22
2.6 Additional Technical Remarks on the Backpropagation Model 24
2.7 Simple Perceptrons .. 28
2.8 Applications of the Backpropagation Model ... 31
2.9 General Remarks on Neural Networks .. 33

3 Neural Networks: Other Models .. 37
3.1 Prelude ... 37
3.2 Associative Memory .. 40
3.3 Hopfield Networks .. 41
3.4 The Hopfield-Tank Model for Optimization Problems: The Basics 46
 3.4.1 One-Dimensional Layout ... 46
 3.4.2 Two-Dimensional Layout .. 48
3.5 The Hopfield-Tank Model for Optimization Problems: Applications 49
 3.5.1 The N-Queen Problem ... 49
 3.5.2 A General Guideline to Apply the Hopfield-Tank Model to
 Optimization Problems .. 54
 3.5.3 Traveling Salesman Problem (TSP) ... 55
3.6 The Kohonen Model .. 58
3.7 Simulated Annealing ... 63

Contents

x Contents

3.8 Boltzmann Machines ... 69
 3.8.1 An Overview .. 69
 3.8.2 Unsupervised Learning by the Boltzmann Machine: The Basics
 Architecture .. 70
 3.8.3 Unsupervised Learning by the Boltzmann Machine: Algorithms 76
 3.8.4 Appendix. Derivation of Delta-Weights 81

4 Genetic Algorithms and Evolutionary Computing 85
4.1 What are Genetic Algorithms and Evolutionary Computing? 85
4.2 Fundamentals of Genetic Algorithms .. 87
4.3 A Simple Illustration of Genetic Algorithms .. 90
4.4 A Machine Learning Example: Input-to-Output Mapping 95
4.5 A Hard Optimization Example: the Traveling Salesman
 Problem (TSP) ... 102
4.6 Schemata ... 108
 4.6.1 Changes of Schemata Over Generations 109
 4.6.2 Example of Schema Processing ... 113
4.7 Genetic Programming .. 116
4.8 Additional Remarks ... 118

5 Fuzzy Systems .. 121
5.1 Introduction ... 121
5.2 Fundamentals of Fuzzy Sets .. 123
 5.2.1 What is a Fuzzy Set? .. 123
 5.2.2 Basic Fuzzy Set Relations .. 125
 5.2.3 Basic Fuzzy Set Operations and Their Properties 126
 5.2.4 Operations Unique to Fuzzy Sets ... 128
5.3 Fuzzy Relations ... 130
 5.3.1 Ordinary (Nonfuzzy) Relations .. 130
 5.3.2 Fuzzy Relations Defined on Ordinary Sets 133
 5.3.3 Fuzzy Relations Derived from Fuzzy Sets 138
5.4 Fuzzy Logic ... 138
 5.4.1 Ordinary Set Theory and Ordinary Logic 138
 5.4.2 Fuzzy Logic Fundamentals .. 139
5.5 Fuzzy Control .. 143
 5.5.1 Fuzzy Control Basics ... 143
 5.5.2 Case Study: Controlling Temperature with a Variable
 Heat Source 150
 5.5.3 Extended Fuzzy if-then Rules Tables .. 152
 5.5.4 A Note on Fuzzy Control Expert Systems 155
5.6 Hybrid Systems ... 156
5.7 Fundamental Issues ... 157
5.8 Additional Remarks ... 158

6 Rough Sets .. 162
6.1 Introduction ... 162
6.2 Review of Ordinary Sets and Relations ... 165

Contents xi

6.3 Information Tables and Attributes ... 167
6.4 Approximation Spaces .. 170
6.5 Knowledge Representation Systems ... 176
6.6 More on the Basics of Rough Sets .. 180
6.7 Additional Remarks ... 188
6.8 Case Study and Comparisons with Other Techniques 191
 6.8.1 Rough Sets Applied to the Case Study .. 192
 6.8.2 ID3 Approach and the Case Study ... 195
 6.8.3 Comparisons with Other Techniques ... 202

7 Chaos .. 206
7.1 What is Chaos? .. 206
7.2 Representing Dynamical Systems ... 210
 7.2.1 Discrete dynamical systems ... 210
 7.2.2 Continuous dynamical systems .. 212
7.3 State and Phase Spaces .. 218
 7.3.1 Trajectory, Orbit and Flow .. 218
 7.3.2 Cobwebs .. 221
7.4 Equilibrium Solutions and Stability .. 222
7.5 Attractors ... 227
 7.5.1 Fixed-point attractors ... 228
 7.5.2 Periodic attractors .. 228
 7.5.3 Quasi-periodic attractors .. 230
 7.5.4 Chaotic attractors ... 233
7.6 Bifurcations ... 234
7.7 Fractals .. 238
7.8 Applications of Chaos ... 242

Index .. 247

1 Introduction

1.1 An Overview of the Field of Artificial Intelligence

What is artificial intelligence?

The Industrial Revolution, which started in England around 1760, has replaced
human muscle power with the machine. Artificial intelligence (AI) aims at replacing
human intelligence with the machine. The work on artificial intelligence started in
the early 1950s, and the term itself was coined in 1956.
 There is no standard definition of exactly what artificial intelligence is. If you ask
five computing professionals to define "AI", you are likely to get five different
answers. The Webster's New World College Dictionary, Third Edition describes AI
as "the capability of computers or programs to operate in ways to mimic human
thought processes, such as reasoning and learning." This definition is an orthodox
one, but the field of AI has been extended to cover a wider spectrum of subfields.
AI can be more broadly defined as "the study of making computers do things that the
human needs intelligence to do." This extended definition not only includes the first,
mimicking human thought processes, but also covers the technologies that make the
computer achieve intelligent tasks even if they do not necessarily simulate human
thought processes.
 But what is intelligent computation? This may be characterized by considering
the types of computations that do not seem to require intelligence. Such problems
may represent the complement of AI in the universe of computer science. For
example, purely numeric computations, such as adding and multiplying numbers
with incredible speed, are not AI. The category of pure numeric computations
includes engineering problems such as solving a system of linear equations, numeric
differentiation and integration, statistical analysis, and so on. Similarly, pure data
recording and information retrieval are not AI. This second category of non-AI
processing includes most business data and file processing, simple word processing,
and non-intelligent databases.
 After seeing examples of the complement of AI, i.e., nonintelligent computation,
we are back to the original question: what is intelligent computation? One common
characterization of intelligent computation is based on the appearance of the
problems to be solved. For example, a computer adding 2 + 2 and giving 4 is not

1 Introduction

2

intelligent; a computer performing symbolic integration of sin2x e-x is intelligent.
Classes of problems requiring intelligence include inference based on knowledge,
reasoning with uncertain or incomplete information, various forms of perception and
learning, and applications to problems such as control, prediction, classification, and
optimization.
 A second characterization of intelligent computation is based on the underlying
mechanism for biological processes used to arrive at a solution. The primary
examples of this category are neural networks and genetic algorithms. This view of
AI is important even if such techniques are used to compute things that do not
otherwise appear intelligent.

Recent trends in AI

AI as a field has undergone rapid growth in diversification and practicality. From
around the mid-1980s, the repertoire of AI techniques has evolved and expanded.
Scores of newer fields have recently been added to the traditional domains of
practical AI. Although much practical AI is still best characterized as advanced
computing rather than "intelligence," applications in everyday commercial and
industrial settings have grown, especially since 1990. Additionally, AI has exhibited
a growing influence on other computer science areas such as databases, software
engineering, distributed computing, computer graphics, user interfaces, and
simulation.

Different categories of AI

There are two fundamentally different major approaches in the field of AI. One is
often termed traditional symbolic AI, which has been historically dominant. It is
characterized by a high level of abstraction and a macroscopic view. Classical
psychology operates at a similar level. Knowledge engineering systems and logic
programming fall in this category. Symbolic AI covers areas such as knowledge
based systems, logical reasoning, symbolic machine learning, search techniques, and
natural language processing.
 The second approach is based on low level, microscopic biological models,
similar to the emphasis of physiology or genetics. Neural networks and genetic
algorithms are the prime examples of this latter approach. These biological models
do not necessarily resemble their original biological counterparts. However, they are
evolving areas from which many people expect significant practical applications in
the future.
 In addition to the two major categories mentioned above, there are relatively new
AI techniques which include fuzzy systems, rough set theory, and chaotic systems or
chaos for short. Fuzzy systems and rough set theory can be employed for symbolic
as well as numeric applications, often dealing with incomplete or imprecise data.
These nontraditional AI areas - neural networks, genetic algorithms or evolutionary
computing, fuzzy systems, rough set theory, and chaos - are the focus of this book.

1.2 An Overview of the Areas Covered in this Book

 3

1.2 An Overview of the Areas Covered in this Book

In this book, five areas are covered: neural networks, genetic algorithms, fuzzy
systems, rough sets, and chaos. Very brief descriptions for the major concepts of
these five areas are as follows:

 Neural networks Computational models of the brain. Artificial neurons are

interconnected by edges, forming a neural network. Similar
to the brain, the network receives input, internal processes
take place such as activations of the neurons, and the
network yields output.

 Genetic algorithms: Computational models of genetics and evolution. The three
basic ingredients are selection of solutions based on their
fitness, reproduction of genes, and occasional mutation. The
computer finds better and better solutions to a problem as
species evolve to better adapt to their environments.

 Fuzzy systems: A technique of "continuization," that is, extending concepts
to a continuous paradigm, especially for traditionally
discrete disciplines such as sets and logic. In ordinary logic,
proposition is either true or false, with nothing between, but
fuzzy logic allows truthfulness in various degrees.

 Rough sets: A technique of "quantization" and mapping. "Rough" sets
means approximation sets. Given a set of elements and
attribute values associated with these elements, some of
which can be imprecise or incomplete, the theory is suitable
to reasoning and discovering relationships in the data.

 Chaos: Nonlinear deterministic dynamical systems that exhibit
sustained irregularity and extreme sensitivity to initial
conditions.

Background of the five areas

When a computer program solved most of the problems on the final exam for a MIT
freshman calculus course in the late 1950s, there was a much excitement for
the future of AI. As a result, people thought that one day in the not-too-distant future,
the computer might be performing most of the tasks where human intelligence was
required. Although this has not occurred, AI has contributed extensively to real
world applications. People are, however, still disappointed in the level of
achievements of traditional, symbolic AI.
 With this background, people have been looking to totally new technologies for
some kind of breakthrough. People hoped that neural networks, for example, might
provide a breakthrough which was not possible from symbolic AI. There are two
major reasons for such a hope. One, neural networks are based upon the brain, and

1 Introduction

4

two, they are based on a totally different philosophy from symbolic AI. Again, no
breakthrough that truly simulates human intelligence has occurred. However, neural
networks have shown many interesting practical applications that are unique to
neural networks, and hence they complement symbolic AI.
 Genetic algorithms have a flavor similar to neural networks in terms of
dissimilarity from traditional AI. They are computer models based on genetics and
evolution. The basic idea is that the genetic program finds better and better solutions
to a problem just as species evolve to better adapt to their environments. The basic
processes of genetic algorithms are the selection of solutions based on their goodness,
the reproduction for crossover of genes, and mutation for random change of genes.
Genetic algorithms have been extended in their ways of representing solutions and
performing basic processes. A broader definition of genetic algorithms, sometimes
called "evolutionary computing," includes not only generic genetic algorithms but
also classifier systems, artificial life, and genetic programming where each solution
is a computer program. All of these techniques complement symbolic AI.
 The story of fuzzy systems is different from those for neural networks and genetic
algorithms. Fuzzy set theory was introduced as an extension of ordinary set theory
around 1965. But it was known only in a relatively small research community until
an industrial application in Japan became a hot topic in 1986. Especially since 1990,
massive commercial and industrial applications of fuzzy systems have been
developed in Japan, yielding significantly improved performance and cost savings.
The situation has been changing as interest in the U.S. rises, and the trend is
spreading to Europe and other countries. Fuzzy systems are suitable for uncertain or
approximate reasoning, especially for the system with a mathematical model that is
difficult to derive.
 Rough sets, meaning approximation sets, deviate from the idea of ordinary sets.
In fact, both rough sets and fuzzy sets vary from ordinary sets. The area is relatively
new and has remained unknown to most of the computing community. The
technique is particularly suited to inducing relationships in data. It is compared to
other techniques including machine learning in classical AI, Dempster-Shafer theory
and statistical analysis, particularly discriminant analysis.
 Chaos represents a vast class of dynamical systems that lie between rigid
regularity and stochastic randomness. Most scientific and engineering studies and
applications have primarily focused on regular phenomena. When systems are not
regular, they are often assumed to be random and techniques such as probability
theory and statistics are applied. Because of their complexity, chaotic systems have
been shunned by most of the scientific community, despite their commonness.
Recently, however, there has been growing interest in the practical applications of
these systems. Chaos studies those systems that appear random, but the underlying
rules are regular.
 An additional note: The areas covered in this book are sometimes collectively
referred to as soft computing. The primary aim of soft computing is close to that of
fuzzy systems, that is, to exploit the tolerance for imprecision and uncertainty to
achieve tractability, robustness, and low cost in practical applications. I did not use
the term soft computing for several reasons. First of all, the term has not been widely
recognized and accepted in computer science, even within the AI community. Also
it is sometimes confused with "software engineering." And the aim of soft

Further Reading

 5

computing is too narrow for the scopes of most areas. For example, most
researchers in neural networks or genetic algorithms would probably not accept that
their fields are under the umbrella of soft computing.

Comparisons of the areas covered in this book

For easy understanding of major philosophical differences among the five areas
covered in this book, we consider two characteristics: deductive/inductive and
numeric/descriptive. With oversimplification, the following table shows typical
characteristics of these areas.

 Microscopic, Macroscopic,
 Primarily Numeric Descriptive and Numeric
 ──
 Deductive Chaos Fuzzy systems
 Inductive Neural networks Rough sets
 Genetic algorithms

In a "deductive" system, rules are provided by experts, and output is determined by
applying appropriate rules for each input. In an "inductive" system, rules themselves
are induced or discovered by the system rather than by an expert. "Microscopic,
primarily numeric" means that the primary input, output, and internal data are
numeric. "Macroscopic, descriptive and numeric" means that data involved can be
either high level description, such as "very fast," or numeric, such as "100 km/hr."
 Both neural networks and genetic algorithms are sometimes referred to as "guided
random search" techniques, since both involve random numbers and use some kind
of guide such as steepest descent to search solutions in a state space.

Further Reading

For practical applications of AI, both in traditional and newer areas, the following
five special issues provide a comprehensive survey.

T. Munakata (Guest Editor), Special Issue on "Commercial and Industrial AI,"
 Communications of the ACM, Vol. 37, No. 3, March, 1994.
T. Munakata (Guest Editor), Special Issue on "New Horizons in Commercial and
 Industrial AI," Communications of the ACM, Vol. 38, No. 11, Nov., 1995.
U. M. Fayyad, et al. (Eds.), Data Mining and Knowledge Discovery in Databases,
 Communications of the ACM, Vol. 39, No. 11, Nov., 1996.
T. Munakata (Guest Editor), Special Section on "Knowledge Discovery,"

Communications of the ACM, Vol. 42, No. 11, Nov., 1999.
U. M. Fayyad, et al. (Eds.), Evolving Data Mining into Solutions for Insights, ,
 Communications of the ACM, Vol. 45, No. 8, Aug., 2002.

The following four books are primarily for traditional AI, the counterpart of this
book.

1 Introduction

6

G. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem
 Solving, 5th Ed., Addison-Wesley; 2005.
S. Russell and P. Norvig, Artificial Intelligence: Modern Approach, 2nd Ed.,
 Prentice-Hall, 2003.
E. Rich and K. Knight, Artificial Intelligence, 2nd Ed., McGraw-Hill, 1991.
P.H. Winston, Artificial Intelligence, 3rd Ed., Addison-Wesley, 1992.

 2 Neural Networks:
Fundamentals and the
Backpropagation Model

2.1 What Is a Neural Network?

A neural network (NN) is an abstract computer model of the human brain. The
human brain has an estimated 1011 tiny units called neurons. These neurons are
interconnected with an estimated 1015 links. Although more research needs to be
done, the neural network of the brain is considered to be the fundamental functional
source of intelligence, which includes perception, cognition, and learning for humans
as well as other living creatures.
 Similar to the brain, a neural network is composed of artificial neurons (or units)
and interconnections. When we view such a network as a graph, neurons can be
represented as nodes (or vertices), and interconnections as edges.
 Although the term "neural networks" (NNs) is most commonly used, other names
include artificial neural networks (ANNs)⎯to distinguish from the natural brain
neural networks⎯neural nets, PDP(Parallel Distributed Processing) models (since
computations can typically be performed in both parallel and distributed processing),
connectionist models, and adaptive systems.
 I will provide additional background on neural networks in a later section of this
chapter; for now, we will explore the core of the subject.

 2.2 A Neuron

The basic element of the brain is a natural neuron; similarly, the basic element of
every neural network is an artificial neuron, or simply neuron. That is, a neuron is
the basic building block for all types of neural networks.

Description of a neuron

A neuron is an abstract model of a natural neuron, as illustrated in Figs. 2.1. As we
can see in these figures, we have inputs x1, x2, ..., xm coming into the neuron. These
inputs are the stimulation levels of a natural neuron. Each input xi is multiplied by its

2 Neural Networks: Fundamentals and the Backpropagation Model

 8

(a) (b)

Fig. 2.1 (a)A neuron model that retains the image of a natural neuron. (b) A further
abstraction of Fig. (a).

corresponding weight wi, then the product xiwi is fed into the body of the neuron. The
weights represent the biological synaptic strengths in a natural neuron. The neuron
adds up all the products for i = 1, m. The weighted sum of the products is usually
denoted as net in the neural network literature, so we will use this notation. That is,
the neuron evaluates net = x1w1 + x2w2 + ... + xmwm. In mathematical terms, given two
vectors x = (x1, x2, ..., xm) and w = (w1, w2, ..., wm), net is the dot (or scalar) product
of the two vectors, x⋅w ≡ x1w1 + x2w2 + ... + xmwm. Finally, the neuron computes its
output y as a certain function of net, i.e., y = f(net). This function is called the
activation (or sometimes transfer) function. We can think of a neuron as a sort of
black box, receiving input vector x then producing a scalar output y. The same output
value y can be sent out through multiple edges emerging from the neuron.

Activation functions

Various forms of activation functions can be defined depending on the characteristics
of applications. The following are some commonly used activation functions (Fig.
2.2).
 For the backpropagation model, which will be discussed next, the form of Fig. 2.2
(f) is most commonly used. As a neuron is an abstract model of a brain neuron, these
activation functions are abstract models of electrochemical signals received and
transmitted by the natural neuron. A threshold shifts a critical point of the net value
for the excitation of the neuron.

2.3 Basic Idea of the Backpropagation Model

Although many neural network models have been proposed, the backpropagation is
the most widely used model in terms of practical applications. No statistical surveys
have been conducted, but probably over 90% of commercial and industrial appli-
cations of neural networks use backpropagation or its derivatives. We will study the
fundamentals of this popular model in two major steps. In this section, we will
present a basic outline. In the next Section 2.4, we will discuss technical details. In
Section 2.5, we will describe a so-called cookbook recipe summarizing the resulting

2.3 Basic Idea of the Backpropagation Model

9

Fig. 2.2 (a) A piecewise linear function: y = 0 for net < 0 and y = k⋅net for net ≥ 0, where k is
a positive constant. (b) A step function: y = 0 for net < 0 and y = 1 for net ≥ 0. (c) A
conventional approximation graph for the step function defined in (b). This type of
approximation is common practice in the neural network literature. More precisely, this graph
can be represented by one with a steep line around net = 0, e.g., y = 0 for net < -ε, y = (net -
ε)/2ε + 1 for -ε ≤ net < ε, and y = 1 for net ≥ ε, where ε is a very small positive constant, that
is, ε → +0. (d) A step function with threshold θ: y = 0 for net + θ < 0 and y = 1 otherwise.
The same conventional approximation graph is used as in (c). Note that in general, a graph
where net is replaced with net + θ can be obtained by shifting the original graph without
threshold horizontally by θ to the left. (This means that if θ is negative, shift by |θ| to the
right.) Note that we can also modify Fig. 2.2 (a) with threshold. (e) A sigmoid function: y
= 1/[1 + exp(-net)], where exp(x) means ex. (f) A sigmoid function with threshold θ: y = 1/[1
+ exp{-(net + θ)}].

formula necessary to implement neural networks.

Architecture

The pattern of connections between the neurons is generally called the architecture
of the neural network. The backpropagation model is one of layered neural net-
works, since each neural network consists of distinct layers of neurons. Fig. 2.3
shows a simple example. In this example, there are three layers, called input, hidden,

 10

and output layers. In this specific example, the input layer has four neurons, hidden
has two, and output has three.
 Generally, there are one input, one output, and any number of hidden layers. One
hidden layer as in Fig. 2.3 is most common; the next common numbers are zero (i.e.,
no hidden layer) and two. Three or more hidden layers are very rare. You may re-
member that to count the total number of layers in a neural network, some authors
include the input layer while some don't. In the above example, the numbers will be
3 and 2, respectively, in these two ways of counting. The reason the input layer is
sometimes not counted is that the "neurons" in the input layer do not compute
anything. Their function is merely to send out input signals to the hidden layer
neurons. A less ambiguous way of counting the number of layers would be to count
the number of hidden layers. Fig. 2.3 is an example of a neural network with one
hidden layer.

Fig. 2.3 simple example of backpropagation architecture. Only selected weights are illus-
trated.

 The number of neurons in the above example, 4, 2, and 3, is much smaller than the
ones typically found in practical applications. The number of neurons in the input
and output layers are usually determined from a specific application problem. For
example, for a written character recognition problem, each character is plotted on a
two-dimensional grid of 100 points. The number of input neurons would then be 100.
For the hidden layer(s), there are no definite numbers to be computed from a problem.
Often, the trial-and-error method is used to find a good number.
 Let us assume one hidden layer. All the neurons in the input layer are connected
to all the neurons in the hidden layer through the edges. Similarly, all the neurons in
the hidden layer are connected to all the neurons in the output layer through the edges.
Suppose that there are ni, nh, and no neurons in the input, hidden, and output layers,
respectively. Then there are ni × nh edges from the input to hidden layers, and nh ×
no edges from the hidden to output layers.
 A weight is associated with each edge. More specifically, weight wij is associated
with the edge from input layer neuron xi to hidden layer neuron zj; weight w'ij is

2 Neural Networks: Fundamentals and the Backpropagation Model

2.3 Basic Idea of the Backpropagation Model

11

associated with the edge from hidden layer neuron zi to output layer neuron yj. (Some
authors denote wij as wji and w'ij as w'ji, i.e., the order of the subscripts are reversed.
We follow graph theory convention that a directed edge from node i to node j is
represented by eij.) Typically, these weights are initialized randomly within a
specific range, depending on the particular application. For example, weights for a
specific application may be initialized randomly between -0.5 and +0.5. Perhaps w11
= 0.32 and w12 = -0.18.
 The input values in the input layer are denoted as x1, x2, ..., xni. The neurons
themselves can be denoted as 1, 2, ... ni, or sometimes x1, x2, ..., xni, the same notation
as input. (Different notations can be used for neurons as, for example, ux1, ux2, ..., uxni,
but this increases the number of notations. We would like to keep the number of
notations down as long as they are practical.) These values can collectively be
represented by the input vector x = (x1, x2, ..., xni). Similarly, the neurons and the
internal output values from these neurons in the hidden layer are denoted as z1, z2, ...,
znh and z = (z1, z2, ..., znh). Also, the neurons and the output values from the neurons
in the output layer are denoted as y1, y2, ..., yno and y = (y1, y2, ..., yno). Similarly, we
can define weight vectors; e.g., wj = (w1j, w2j, ..., wni,j) represents the weights from all
the input layer neurons to the hidden layer neuron zj; w'j = (w'1j, w'2j, ..., w'nh,j)
represents the weights from all the hidden layer neurons to the output layer neuron yj.
We can also define the weight matrices W and W' to represent all the weights in a
compact way as follows:

 W = [w1
T w2

T ... wnh
T] =

11 12 1,

21 22 2,

,1

 . . .
 . . .

. . .
 . . .

nh

nh

ni ni, nh

w w w
w w w

w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where wT means the transpose of w, i.e., when w is a row vector, wT is the column
vector of the same elements. Matrix W' can be defined in the same way for vectors
w'j.
 When there are two hidden layers, the above can be extended to z = (z1, z2, ..., znh)
and z' = (z'1, z'2, ..., z'nh'), where z represents the first hidden layer and z' the second.
When there are three or more hidden layers, these can be extended to z, z', z", and so
on. But since three or more hidden layers are very rare, we normally do not have to
deal with such extensions. The weights can also be extended similarly. When there
are two hidden layers, the weight matrices, for example, can be extended to: W from
the input to first hidden layers, W' from the first to second hidden layers, and W"
from the second hidden to output layers.

Learning (training) process

Having set up the architecture, the neural network is ready to learn, or said another
way, we are ready to train the neural network. A rough sketch of the learning process
is presented in this section. More details will be provided in the next section.
 A neural network learns patterns by adjusting its weights. Note that "patterns"
here should be interpreted in a very broad sense. They can be visual patterns such as

 12

two-dimensional characters and pictures, as well as other patterns which may
represent information in physical, chemical, biological, or management problems.
For example, acoustic patterns may be obtained by taking snapshots at different times.
Each snapshot is a pattern of acoustic input at a specific time; the abscissa may
represent the frequency of sound, and the ordinate, the intensity of the sound. A
pattern in this example is a graph of an acoustic spectrum. To predict the perfor-
mance of a particular stock in the stock market, the abscissa may represent various
parameters of the stock (such as the price of the stock the day before, and so on), and
the ordinate, values of these parameters.
 A neural network is given correct pairs of (input pattern, target output pattern).
Hereafter we will call the target output pattern simply target pattern. That is, (input
pattern 1, target pattern 1), (input pattern 2, target pattern 2), and so forth, are given.
Each target pattern can be represented by a target vector t = (t1, t2, ..., tno). The
learning task of the neural network is to adjust the weights so that it can output the
target pattern for each input pattern. That is, when input pattern 1 is given as input
vector x, its output vector y is equal (or close enough) to the target vector t for target
pattern 1; when input pattern 2 is given as input vector x, its output vector y is equal
(or close enough) to the target vector t for target pattern 2; and so forth.
 When we view the neural network macroscopically as a black box, it learns
mapping from the input vectors to the target vectors. Microscopically it learns by
adjusting its weights. As we see, in the backpropagation model we assume that there
is a teacher who knows and tells the neural network what are correct input-to-output
mapping. The backpropagation model is called a supervised learning method for
this reason, i.e., it learns under supervision. It cannot learn without being given
correct sample patterns.
 The learning procedure can be outlined as follows:

Outline of the learning (training) algorithm

Outer loop. Repeat the following until the neural network can consecutively map all
patterns correctly.

Inner loop. For each pattern, repeat the following Steps 1 to 3 until the output vector
y is equal (or close enough) to the target vector t for the given input vector x.

 Step 1. Input x to the neural network.

 Step 2. Feedforward. Go through the neural network, from the input to
hidden layers, then from the hidden to output layers, and get output
vector y.

 Step 3. Backward propagation of error corrections. Compare y with t. If
y is equal or close enough to t, then go back to the beginning of the
Outer loop. Otherwise, backpropagate through the neural network
and adjust the weights so that the next y is closer to t, then go back
to the beginning of the Inner loop.

In the above, each Outer loop iteration is called an epoch. An epoch is one cycle
through the entire set of patterns under consideration. Note that to terminate the

2 Neural Networks: Fundamentals and the Backpropagation Model

2.3 Basic Idea of the Backpropagation Model

13

outer loop (i.e., the entire algorithm), the neural network must be able to produce the
target vector for any input vector. Suppose, for example, that we have two sample
patterns to train the neural network. We repeat the inner loop for Sample 1, and the
neural network is then able to map the correct t after, say, 10 iterations. We then
repeat the inner loop for Sample 2, and the neural network is then able to map the
correct t after, say, 8 iterations. This is the end of the first epoch. The end of the first
epoch is not usually the end of the algorithm or outer loop. After the training session
for Sample 2, the neural network "forgets" part of what it learned for Sample 1.
Therefore, the neural network has to be trained again for Sample 1. But, the second
round (epoch) training for Sample 1 should be shorter than the first round, since the
neural network has not completely forgotten Sample 1. It may take only 4 iterations
for the second epoch. We can then go to Sample 2 of the second epoch, which may
take 3 iterations, and so forth. When the neural network gives correct outputs for
both patterns with 0 iterations, we are done. This is why we say "consecutively map
all patterns" in the first part of the algorithm. Typically, many epochs are required to
train a neural network for a set of patterns.
 There are alternate ways of performing iterations. One variation is to train Pattern
1 until it converges, then store its wijs in temporary storage without actually updating
the weights. Repeat this process for Patterns 2, 3, and so on, for either several or the
entire set of patterns. Then take the average of these weights for different patterns for
updating. Another variation is that instead of performing the inner loop iterations
until one pattern is learned, the patterns are given in a row, one iteration for each
pattern. For example, one iteration of Steps 1, 2, and 3 are performed for Sample 1,
then the next iteration is immediately performed for Sample 2, and so on. Again, all
samples must converge to terminate the entire iteration.

Case study - pattern recognition of hand-written characters

For easy understanding, let us consider a simple example where our neural network
learns to recognize hand-written characters. The following Fig. 2.4 shows two
sample input patterns ((a) and (b)), a target pattern ((c)), input vector x for pattern (a)
((d)), and layout of input, output, and target vectors ((e)). When people hand-write
characters, often the characters are off from the standard ideal pattern. The objective
is to make the neural network learn and recognize these characters even if they are
slightly deviated from the ideal pattern.
 Each pattern in this example is represented by a two-dimensional grid of 6 rows
and 5 columns. We convert this two-dimensional representation to one-dimensional
by assigning the top row squares to x1 to x5, the second row squares to x6 to x10, etc.,
as shown in Fig. (e). In this way, two-dimensional patterns can be represented by the
one-dimensional layers of the neural network. Since xi ranges from i = 1 to 30, we
have 30 input layer neurons. Similarly, since yi also ranges from i = 1 to 30, we have
30 output layer neurons. In this example, the number of neurons in the input and
output layers is the same, but generally their numbers can be different. We may arbi-
trarily choose the number of hidden layer neurons as 15.
 The input values of xi are determined as follows. If a part of the pattern is within
the square xi, then xi = 1, otherwise xi = 0. For example, for Fig. (c), x1 = 0, x2 = 0, x3
= 1, etc. Fig. 2.4 representation is coarse since this example is made very simple for
illustrative purpose. To get a finer resolution, we can increase the size of the grid to,

 14

e.g., 50 rows and 40 columns.
 After designing the architecture, we initialize all the weights associated with edges
randomly, say, between -0.5 and 0.5. Then we perform the training algorithm de-
scribed before until both patterns are correctly recognized. In this example, each yi
may have a value between 0 and 1. 0 means a complete blank square, 1 means a
complete black square, and a value between 0 and 1 means a "between" value: gray.
Normally we set up a threshold value, and a value within this threshold value is
considered to be close enough. For example, a value of yi anywhere between 0.95
and 1.0 may be considered to be close enough to 1; a value of yi anywhere between
0.0 and 0.05 may be considered to be close enough to 0.
 After completing the training sessions for the two sample patterns, we might have
a surprise. The trained neural network gives correct answers not only for the sample
data, but also it may give correct answers for totally new similar patterns. In other
words, the neural network has robustness for identifying data. This is indeed a major
goal of the training - a neural network can generalize the characteristics associated
with the training examples and recognize similar patterns it has never been given
before.

 Fig. 2.4(a) and (b): two sample input patterns; (c): a target pattern; (d) input vector x for
Pattern (a); (e) layout for input vector x, output vector y (for y, replace x with y), and target
vector t (for t, replace x with t);

 We can further extend this example to include more samples of character "A," as
well as to include additional characters such as "B," "C," and so on. We will have
training samples and ideal patterns for these characters. However, a word of caution
for such extensions in general: training of a neural network for many patterns is not
a trivial matter, and it may take a long time before completion. Even worse, it may

2 Neural Networks: Fundamentals and the Backpropagation Model

2.4 Details of the Backpropagation Model 15

never converge to completion. It is not uncommon that training a neural network for
a practical application requires hours, days, or even weeks of continuous running of
a computer. Once it is successful, even if it takes a month of continuous training, it
can be copied to other systems easily and the benefit can be significant.

2.4 Details of the Backpropagation Model

Having understood the basic idea of the backpropagation model, we now discuss
technical details of the model. With this material, we will be able to design neural
networks for various application problems and write computer programs to obtain
solutions.
 In this section, we describe how such a formula can be derived. In the next section,
we will describe a so-called cookbook recipe summarizing the resulting formula
necessary to implement neural networks. If you are in a hurry to implement a neural
network, or cannot follow some of the mathematical derivations, the details of this
section can be skipped. However, it is advisable to follow the details of such basic
material once for two reasons. One, you will get a much deeper understanding of the
material. Two, if you have any questions on the material or doubts about typos in the
formula, you can always check them yourself.

Architecture

The network architecture is a generalization of a specific example discussed before in
Fig. 2.3, as shown in Fig. 2.5. As before, this network has three layers: input, hidden,
and output. Networks with these three layers are the most common. Other forms of
network configurations such as no or two hidden layers can be handled similarly.

Fig. 2.5 A general configuration of the backpropagation model neural network.

 16

 There are ni, nh, and no neurons in the input, hidden, and output layers, respectively.
Weight wij is associated to the edge from input layer neuron xi to hidden layer neuron
zj; weight w'ij is associated to the edge from hidden layer neuron zi to output layer
neuron yj. As discussed before, the neurons in the input layer as well as input values
at these neurons are denoted as x1, x2, ..., xni. These values can collectively be
represented by the input vector x = (x1, x2, ..., xni). Similarly, the neurons and the
internal output values from neurons in the hidden layer are denoted as z1, z2, ..., znh,
and z = (z1, z2, ..., znh). Also, the neurons and the output values from the neurons in
the output layer are denoted as y1, y2, ..., yno, and y = (y1, y2, ..., yno). Similarly, we can
define weight vectors; e.g., wj = (w1j, w2j, ..., wni,j) represents the weights from all the
input layer neurons to the hidden layer neuron zj; w'j = (w'1j, w'2j, ..., w'nh,j) represents
the weights from all the hidden layer neurons to the output layer neuron yj.

Initialization of weights

Typically these weights are initialized randomly within a certain range, a specific
range depending on a particular application. For example, weights for a specific
application may be initialized with uniform random numbers between -0.5 and +0.5.

Feedforward: Activation function and computing z from x, and y
from z

Let us consider a local neuron j, which can represent either a hidden layer neuron zj
or an output layer neuron yj. (As an extension, if there is a second hidden layer, j can
also represent a second hidden layer neuron z'j.) (Fig. 2.6).

 Fig. 2.6. Configuration of a local neuron j.

The weighted sum of incoming activations or inputs to neuron j is: netj = Σi wijoi,
where Σi is taken over all i values of the incoming edges. (Here oi is the input to
neuron j. Although ii may seem to be a better notation, oi is originally the output of
neuron i. Rather than using two notations for the same thing and equating oi to ii in
every computation, we use a single notation oi.) Output from neuron j, oj, is an
activation function of netj. Here we use the most commonly used form of activation
function, sigmoid with threshold (Fig. 2.2 (f)), as oj = fj(netj) = 1/[1 + exp{-(netj +
θj)}]. (Determining the value of θj will be discussed shortly.)
 Given input vector x, we can compute vectors z and y using the above formula.
For example, to determine zj, compute netj = Σi wijxi, then zj = fj(netj) = 1/[1 +
exp{-(netj + θj)}]. In turn, these computed values of zj are used as incoming
activations or inputs to neurons in the output layer. To determine yj, compute netj =

2 Neural Networks: Fundamentals and the Backpropagation Model

2.4 Details of the Backpropagation Model 17

Σi w'ijzi, then yj = fj(netj) = 1/[1 + exp{-(netj + θ'j)}]. (Determining the value of θ'j
will also be discussed shortly.) We note that for example, vector net = (net1, net2 . . .)
= (Σi wi1xi, Σi wi2xi, . . .) = (Σi xiwi1, Σi xiwi2, . . .) can be represented in compact way
as net = xW, where xW is the matrix product of x and W.

Backpropagation for adjusting weights to minimize the difference
between output y and target t

We now adjust the weights in such a way as to make output vector y closer to target
vector t. We perform this starting from the output layer back to the hidden layer,
modifying the weights, W', then further backing from the hidden layer to the input
layer, and changing the weights, W. Because of this backward changing process of
the weights, the model is named "backpropagation." This scheme is also called the
generalized delta rule since it is a generalization of another historically older
procedure called the delta rule. Note that the backward propagation is only for the
purpose of modifying the weights. In the backpropagation model discussed here,
activation or input information to neurons advances only forward from the input to
hidden, then from the hidden to output layers. The activation information never goes
backward, for example from the output to hidden layers. There are neural network
models in which such backward information passing occurs as feedback. This
category of models is called recurrent neural networks. The meaning of the back-
ward propagation of the backpropagation model should not be confused with these
recurrent models.
 To consider the difference of the two vectors y and t, we take the square of the
error or "distance" of the two vectors as follows.

E = ()21
2 j

j jt y⎛ ⎞ −⎜ ⎟
⎝ ⎠

∑

Generally, taking the square of the difference is a common approach for many
minimization problems. Without taking the square, e.g., E = Σj (tj - yj), positive and
negative values of (tj - yj) for different j's cancel out and E will become smaller than
the actual error. Summing up the absolute differences, i.e., E = Σj |tj - yj| is correct,
but taking the square is usually easier for computation. The factor (1/2) is also a
common practice when the function to be differentiated has the power of 2; after
differentiation, the original factor of (1/2) and the new factor of 2 from
differentiation cancel out, and the coefficient of the derivative will become 1.
 The goal of the learning procedure is to minimize E. We want to the reduce the
error E by improving the current values of wij and w'ij. In the following derivation of
the backpropagation formula, we assume that wij can be either wij and w'ij, unless
otherwise specified. Improving the current values of wij is performed by adding a
small fraction of wij, denoted as Δwij, to wij. In equation form:

wij
(n+1) = wij

(n) + Δwij
(n).

 Here the superscript (n) in wij

(n) represents the value of wij at the n-th iteration. That
is, the equation says that the value of wij at the (n+1)st iteration is obtained by adding

 18

the values of wij and Δwij at the n-th iteration.
 Our next problem is to determine the value of Δwij

(n). This is done by using the
steepest descent of E in terms of wij, i.e., Δwij

(n) is set proportional to the gradient of
E. (This is a very common technique used for minimization problems, called the
steepest descent method.) As an analogy, we can think of rolling down a small ball
on a slanted surface in a three-dimensional space. The ball will fall in the steepest
direction to reduce the gravitational potential most, analogous to reducing the error
E most. To find the steepest direction of the gravitational potential, we compute
-(∂E/∂x) and -(∂E/∂y), where E is the gravitational potential determined by the
surface; -(∂E/∂x) gives the gradient in the x direction and -(∂E/∂y) gives the gradient
in the y direction.
 From calculus, we remember that the symbol "∂" denotes partial differentiation.
To partially differentiate a function of multiple variables with respect to a specific
variable, we consider the other remaining variables as if they were constants. For
example, for f(x, y) = x2y5 + e-x, we have ∂f/∂y = 5x2y4, the term e-x becoming zero for
partial differentiation with respect to y. In our case, the error E is a function of wij and
w'ij rather than only two variables, x and y, in a three-dimensional space. The number
of wij's is equal to the number of edges from the input to hidden layers, and the
number of w'ij's is equal to the number of edges from the hidden to output layers. To
make Δwij

(n) proportional to the gradient of E, we set Δwij
(n) as:

∆wij (n) =
ij

E
w

η
∂

−
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

where η is a positive constant called the learning rate.
 Our next step is to compute ∂E/∂wij. Fig. 2.7 shows the configuration under
consideration. We are to modify the weight wij (or w'ij) associated to the edge from
neuron i to neuron j. The "output" (activation level) from neuron i (i.e., the "input"
to neuron j) is oi, and the "output" from neuron j is oj. Note again that symbol "o" is
used for both output and input, since output from one neuron becomes input to the
neurons in the downstream. For a neural network with one hidden layer, when i is an
input layer neuron, oi is xi and oj is zj; when i is a hidden layer neuron, oi is zi and oj
is yj.

Fig. 2.7. The associated weight and "output" to neurons i and j.

 Note that E is a function of yj as E = (1/2) Σj (tj - yj)2; in turn, yj is a function (an
activation function) of netj as yj = f(netj), and again in turn netj is a function of wij as
netj = Σi wijoi, where oi is the incoming activation from neuron i to neuron j. By using
the calculus chain rule we write:

2 Neural Networks: Fundamentals and the Backpropagation Model

2.4 Details of the Backpropagation Model 19

ij

E
w
∂

∂
=

j

j ij

E net
net w
∂ ∂

∂ ∂
.

The second factor ∂netj/∂wij requires only a few steps to be evaluated:

j

ij

net
w

∂

∂
 =

kj k

ij

k

w

w o∂

∂

⎛ ⎞
⎜ ⎟
⎝
∑

⎠ (by substituting netj = Σk wkjok)

 =
1 1j

ij

w o
w

∂

∂
+

2 2j

ij

w o
w

∂

∂
+ . . . +

ij i

ij

w o
w

∂

∂
+ . . .

 = oi. (partial differentiation; all terms are 0 except the term
for k = i. This type of partial differentiation appears
in many applications.)

 For convenience of computation, we define:

δj =
j

E
net
∂

∂
−

The introduction of this new variable, δj, turns out to be quite useful for adjusting the
weights (which is the key ingredient of the backpropagation model) as we will see in
the following. Summarizing the results so far, we have

Δwij
(n) = η δj oi,

where δj = -∂E/∂netj is yet to be determined. To compute ∂E/∂netj, we again use the
chain rule:

j

j j j

E E o
net o net
∂ ∂ ∂

∂ ∂ ∂
=

An interpretation of the right-hand side expression is that the first factor (∂E/∂oj)
reflects the change in error E as a function of changes in output oj of neuron j. The
second factor (∂oj/∂netj) represents the change in output oj as a function of changes in
input netj of neuron j. To compute the first factor ∂E/∂oj, we consider two cases: (1)
neuron j is in the output layer, and (2) j is not in the output layer, i.e., it is in a hidden
layer in a multi-hidden layer network, or j is in the hidden layer in a one-hidden layer
network.

Case 1. j is in the output layer.

() (){ }21
2

()k
j j

k k

j j

t o
E

t o
o o

∂ −
∂

∂ ∂
= =

∑
.− −

Case 2. j is in a hidden layer.

 20

'

'
j

kk
jk

k j k j kk k k

E E E E
o net o net o net

w onet w∂

∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂
= = =∑∑ ∑ ∑

 . 'k j

k

wδ= −∑ k

The summation Σk is taken over the neurons in the immediately succeeding layer of
neuron j, but not in the layers beyond. This means that if there are two hidden layers
in the network, and j is in the first hidden layer, k will be over the neurons in the
second hidden layer, but not over the output layer. The partial differentiation with
respect to oj yields only the terms that are directly related to oj. If there is only one
hidden layer, as in our primary analysis, there is no need for such justifications since
there is only one succeeding layer which is the output layer.
 The second factor, (∂oj/∂netj) = (∂fj(netj)/∂netj), depends on a specific activation
function form. When the activation function is the sigmoid with threshold as oj =
fj(netj) = 1/[1 + exp{-(netj + θj)}], we can show: (∂fj(netj)/∂netj) = oj(1 - oj) as follows.
Let f(t) = 1/[1 + exp{-(t + θ)}]. Then by elementary calculus, we have f'(t) = exp{-(t
+ θ)}/[1 + exp{-(t + θ)}]2 = {1/f(t) - 1} ⋅ {f(t)}2 = f(t){1 - f(t)}. By equating f(t) = oj,
we have oj(1 - oj) for the answer.
 By substituting these results back into δj = -∂E/∂netj, we have:

Case 1. j is in the output layer; this case will be used to modify w'ij in our analysis.

δj = (tj - oj)
()

j

j jf net
net

∂

∂
= (tj - oj)oj(1 - oj)

Case 2. j is in a hidden layer; this case will be used to modify wij (rather than w'ij) in
our analysis.

δj =
()

j

j jf net
net

∂

∂
 = o'k j

k

wδ∑ k kj(1 - oj) 'k j

k

wδ∑

More on backpropagation for adjusting weights

The momentum term

Furthermore, to stabilize the iteration process, a second term, called the momentum
term, can be added as follows:

Δwij
(n) = η δj oi + α Δwij

(n-1)

where α is a positive constant called the momentum rate. There is no general for-
mula to compute these constants η and α. Often these constant values are determined
experimentally, starting from certain values. Common values are, for example, η =
0.5 and α = 0.9.

2 Neural Networks: Fundamentals and the Backpropagation Model

2.4 Details of the Backpropagation Model 21

Adjustment of the threshold θj just like a weight

So far we have not discussed how to adjust the threshold θj in the function fj(netj) =
1/[1 + exp{-(netj + θj)}]. This can be done easily by using a small trick; the thresholds
 can be learned just like any other weights. Since netj + θj = Σi wijoi + (θj × 1), we can
treat θj as if the weight associated to an edge from an imaginary neuron to neuron j,
where the output (activation) oi of the imaginary neuron is always 1. Fig. 2.8 shows
this technique. We can also denote θj as wm+1,j.

Fig. 2.8. Treating θj as if the weight associated to an imaginary edge.

Multiple patterns

So far we have assumed that there is only one pattern. We can extend our preceding
discussions to multiple patterns. We can add subscript p, which represents a specific
pattern p, to the variables defined previously. For example, Ep represents the error
for pattern p. Then

E = Σp Ep

gives the total error for all the patterns. Our problem now is to minimize this total
error, which is the sum of errors for individual patterns. This means the gradients are
averaged over all the patterns. In practice, it is usually sufficient to adjust the weights
considering one pattern at a time, or averaging over several patterns at a time.

Iteration termination criteria

There are two commonly used criteria to terminate iterations. One is to check |tj - yj|
≤ ε for every j, where ε is a certain preset small positive constant. Another criterion
is E = (1/2) Σj (tj - yj)2 ≤ ε, where again ε is a preset small positive constant. A value
of ε for the second criterion would be larger than a value of ε for the first one, since
the second criterion checks the total error. The former is more accurate, but often the
second is sufficient for practical applications. In effect, the second criterion checks
the average error for the whole pattern.

 22

 2.5 A Cookbook Recipe to Implement the

Backpropagation Model

We assume that our activation function is the sigmoid with threshold θ. We also
assume that network configuration has one hidden layer, as shown in Fig. 2.9.
Note that there is an additional (imaginary) neuron in each of the input and hid den
layers. The threshold θ is treated as if it were the weight associated to the edge
from the imaginary neuron to another neuron. Hereafter, "weights" include these
thresholds θ. We can denote θj as wni+1,j and θ'j as wnh+1,j.

Initialization.

Initialize all the weights, including the thresholds, to small uniform random numbers,
e.g., between -0.5 and +0.5.

Iterations.

Perform iterations until all patterns are learned (good luck!). There are different
ways of performing iterations; one simple way is to perform inner-loop iterations for
each pattern at a time (as discussed in Section 2.3).

Outer loop. Repeat the following until the neural network can consecutively map
all patterns correctly.

Inner loop. For each pattern, repeat the following Steps 1 to 3 until the output vector
y is equal or close enough to the target vector t for the given input vector x. Use an
iteration termination criterion.

Fig. 2.9. A network configuration for the sigmoid activation function with threshold.

2 Neural Networks: Fundamentals and the Backpropagation Model

2.5 A Cookbook Recipe to Implement the Backpropagation Model 23

 Step 1. Input x to the neural network.

 Step 2. Feedforward. Go through the neural network, from the input to hidden
layers, then from the hidden to output layers, and get output vector y.

 Step 3. Backward propagation for error corrections. Compare y with t. If y is
equal or close enough to t, then go back to the beginning of the Outer loop.
 Otherwise, backpropagate through the neural network and adjust the
weights so that the next y is closer to t (see the next backpropagation
process), then go back to the beginning of the Inner loop.

Backpropagation Process in Step 3.

Modify the values of wij and w'ij according to the following recipe.

wij
(n+1) = wij

(n) + Δwij
(n).

where,

Δwij
(n) = η δj oi + α Δwij

(n-1)

where η and α are positive constants. (For the first iteration, assume the second term
is zero.) Since there is no general formula to compute these constants η and α, start
with arbitrary values, for example, η = 0.5 and α = 0.9. We can adjust the values of
η and α during our experiment for better convergence.
 Assuming that the activation function is the sigmoid with threshold θj, then δj can
be determined as follows:

Case 1. j is in the output layer; modify w'ij.

δj = (tj - oj)oj(1 - oj)

Case 2. j is in the hidden layer; modify wij.

δj = oj(1 - oj) Σk δk w'jk

Note that δk in Case 2 has been computed in Case 1. The summation Σk is taken over
k = 1 to no on the output layer.

Programming considerations

Writing a short program and running it for a simple problem such as Fig. 2.4 is a good
way to understand and test the backpropagation model. Although Fig. 2.4 deals
with character recognition, the basics of the backpropagation model is the same for
other problems. That is, we can apply the same technique for many types of
applications.
 The figures in Fig. 2.4 are given for the purpose of illustration, and they are too
coarse to adequately represent fine structures of the characters. We may increase the

 24

mesh size from 6 × 5 to 10 × 8 or even higher depending on the required resolution.
 We may train our neural network for two types of characters, e.g., "A"and "M". We
will provide a couple of sample patterns and a target pattern for each character. In
addition, we may have test patterns for each character. These test patterns are not
used for training, but will be given to test whether the neural network can identify
these characters correctly.
 A conventional high level language, such as C or Pascal, can be used for coding.
Typically, this program requires 5 or so pages of code. Arrays are the most
reasonable data structure to represent the neurons and weights (although linked lists
can also be used, but arrays are more straightforward from programming point of
view). We should parameterize the program as much as we can, so that any
modification can be done easily, such as changing the number of neurons in each
layer.
 The number of neurons in the input and output layers is determined from the
problem description. However, there is no formula for the number of hidden layers,
so we have to find it from our experiment. As a gross approximation, we may start
with about half as many hidden layer neurons as we have input layer neurons. When
we choose too few hidden layer neurons, the computation time for each iteration will
be short since the number of weights to be adjusted is small. On the other hand, the
number of iterations before convergence may take a long time since there is not much
freedom or flexibility for adjusting the weights to learn the required mapping. Even
worse, the neural network may not be able to learn certain patterns at all. On the
other hand, if we choose too many hidden layer neurons, the situation would be the
opposite of too few. That is, the potential learning capability is high, but each
iteration as well as the entire algorithm may be time-consuming since there are many
weights to be adjusted.
 We have also to find appropriate constant values of η and α from our experiment.
The values of these constant affect the convergence speed, often quite significantly.
The number of iterations required depends on many factors, such as the values of the
constant coefficients, the number of neurons, the iteration termination criteria, the
level of difficulties of sample patterns, and so on. For a simple problem like Fig. 2.4,
and for relatively loose termination criteria, the number of iterations should not be
excessively large; an inner loop for a single pattern may take, say, anywhere 10 to
100 iterations at the first round of training. The number will be smaller for later
round of training. If the number of iterations is much higher, say, 5,000, it is likely
due to an error, for example, misinterpretation of the recipe or an error in
programming. For larger, real world problems, a huge number of iterations is
common, sometimes taking a few weeks or even months of continuous training.

2.6 Additional Technical Remarks on the Backpropagation

Model

Frequently asked questions and answers

Q. I have input and output whose values range from -100 to +800. Can I use these

2 Neural Networks: Fundamentals and the Backpropagation Model

2.6 Additional Technical Remarks on the Backpropagation Model 25

raw data, or must I use normalized or scaled data, e.g., between 0 and 1, or -1 and
1?

A All these types of data representations have been used in practice.

Q. Why do we use hidden layers? Why can't we use only input and output layers?
A. Because otherwise we cannot represent mappings from input to output for many

practical problems. Without a hidden layer, there is not much freedom to cope
with various forms of mapping.

Q. Why do we mostly use one, rather than two or more, hidden layers?
A. The major reason is the computation time. Even with one hidden layer, often a

neural network requires long training time. When the number of layers increases
further, computation time often becomes prohibitive. Occasionally, however,
two hidden layers are used. Sometimes for such a neural network with two
hidden layers, the weights between the input and the first hidden layers are
computed by using additional information, rather than backpropagation. For
example, from some kind of input analysis (e.g., Fourier analysis), these weights
may be estimated.

Q. The backpropagation model assumes there is a human teacher who knows what

are correct answers. Why do we bother training a neural network when the
answers are already known?

A. There are at least two major types of circumstances.
 i) Automation of human operations. Even if the human can perform a certain

task, making the computer achieve the same task makes sense since it can
automate the process. For example, if the computer can identify hand-written
zip code, that will automate mail sorting. Or, an experienced human expert has
been performing control operations without explicit rules. In this case, the oper-
ator knows many mapping combinations from given input to output to perform
the required control. When a neural network learns the set of mapping, we can
automate the control.

 ii) The fact that the human knows correct patterns does not necessarily mean
every problem has been solved. There are many engineering, natural and social
problems for which we know the circumstances and the consequences without
fully understanding how they occur. For example, we may not know when a
machine breaks down. Because of this, we wait until the machine breaks down
then repair or replace, which may be inconvenient and costly. Suppose that we
have 10,000 "patterns" of breakdown and 10,000 patterns of non-breakdown
cases of this type of the machine. We may train a neural network to learn these
patterns and use it for breakdown prediction. Or to predict how earthquakes or
tornados occur or how the prices of stocks in the stock market behave. If we can
train a neural network for pattern matching from circumstantial parameters as
input to consequences as output, the results will be significant even if we still
don't understand the underlying mechanism.

Q. Once a neural network has been trained successfully, it performs the required

mappings as a sort of a black box. When we try to peek inside the box, we only
see the many numeric values of the weights, which don't mean much to us. Can

 26

we extract any underlying rules from the neural network?
A. This is briefly discussed at the end of this chapter. Essentially, the answer is

"no."

Acceleration methods of learning

Since training a neural network for practical applications is often very time con-
suming, extensive research has been done to accelerate this process. The following
are only few sample methods to illustrate some of the ideas.

Ordering of training patterns

As we discussed in Section 2.3, training patterns and subsequent weight modi-
fications can be arranged in different sequences. For example, we can give the
network a single pattern at a time until it is learned, update the weights, then go to the
next pattern. Or we can temporarily store the new weights for several or all patterns
for an epoch, then take the average for the weight adjustment. These approaches and
others often result in different learning speeds. We can experiment with different
approaches until we find a good one.
 Another approach is to temporarily drop input patterns that yield small errors, i.e.,
easy patterns for the neural network for learning. Concentrate on hard patterns first,
then come back to the easy ones after the hard patterns have been learned.

Dynamically controlling parameters

Rather than keeping the learning rate η and the momentum rate α as constants
through out the entire iterations, select good values of these rates dynamically as
iterations progress. To implement this technique, start with several predetermined
values for each of η and α, for example, η = 0.4, 0.5 and 0.6, and α = 0.8, 0.9 and
1.0. Observe which pair of values give the minimum error for the first few iterations,
select these values as temporary constants, as for example, η = 0.4, and α = 0.9, and
perform next, say, 50 iterations. Repeat this process, that is, experiment several
values for each of η and α, select new constant values, then perform next 50
iterations, and so forth.

Scaling of Δwij

(n)

The value of Δwij
(n) determines how much change should be made on wij

(n) to get the
next iteration wij

(n+1). Scaling up or down the value of Δwij
(n) itself, in addition to the

constant coefficient α, may help the iteration process depending on the circumstance.
The value of Δwij

(n) can be multiplied by a factor, as for example, e(ρcosφ)⋅Δwij
(n), where

ρ is a positive constant (e.g., 0.2) and φ is the angle between two vectors (grad E(n
- 1), grad E(n)) in the multi-dimensional space of wij's. Here E(n) is the error E
at the n-th iteration. The grad (also often denoted by ∇) operator on scalar E gives
the gradient vector of E, i.e., it represents the direction in which E increases (i.e.,
-grad represents the direction E decreases). If E is defined on only a twodimensional,
xy-plane, E will be represented by the z axis. Then grad E would be (∂E/∂x, ∂E/∂y);
∂E/∂x represents the gradient in the x direction, and ∂E/∂y represents the gradient in
the y direction. In our backpropagation model, grad E would be (∂E/∂w11,

2 Neural Networks: Fundamentals and the Backpropagation Model

2.6 Additional Technical Remarks on the Backpropagation Model 27

∂E/∂w12, ...). Note that the values of ∂E/∂w11, ..., have already been computed during
the process of backpropagation. From analytic geometry, we have cosφ = grad E(n
- 1) ⋅ grad E(n)) / {|grad E(n - 1)| |grad E(n)|}, where "⋅" is a dot product of two
vectors and | | represents the length of the vector.
 The meaning of this scaling is as follows. If the angle φ is 0, this means E is
decreasing in the same direction in two consecutive iterations. In such a case, we
would accelerate more by taking a larger value of Δwij

(n). This is the case since when
φ is 0, cosφ takes the maximum value of 1, and e(ρcosφ) also takes the maximum value.
 The value of e(ρcosφ) decreases when φ gets larger, and when φ = 90°, cosφ becomes
0, i.e., e(ρcosφ) becomes 1, and the factor has no scaling effect. When φ gets further
larger, the value of e(ρcosφ) further decreases becoming less than 1, having a scaled
down effect on Δwij

(n). Such cautious change in wij
(n) by the scaled down value of

Δwij
(n) is probably a good idea when grad E is wildly swinging its directions. The

value of e(ρcosφ) becomes minimum when φ = 180° and cosφ = -1.

Initialization of wij

The values of the wij's are usually initialized to uniform random numbers in a range
of small numbers. In certain cases, assigning other numbers (e.g., skewed random
numbers or specific values) as initial wij's based on some sort of analysis (e.g.,
mathematical, statistical, or comparisons with other similar neural net works) may
work better. If there are any symmetric properties among the weights, they can be
incorporated throughout iterations, reducing the number of independent weights.

Application of genetic algorithms (a type of a hybrid system)

In Chapter 3 we will discuss genetic algorithms, which are computer models based
on genetics and evolution. Their basic idea is to represent each solution as a col-
lection of "genes" and make good solutions with good genes evolve, just as species
evolve to better adapt to their environments. Such a technique can be applied to the
learning processes of neural networks. Each neural network configuration may be
characterized by a set of values such as (wij's, θ, η, α, and possibly x, y, and t). Each
set of these values is a solution of the genetic algorithm. We try to find (evolve) a
good solution in terms of fast and stable learning. This may sound attractive, but it is
a very time-consuming process.

The local minimum problem

This is a common problem whenever any gradient descent method is employed for
minimization of a complex target function. The backpropagation model is not an
exception to this common problem. The basic idea is illustrated in Fig. 2.10. The
error E is a function of many wij's, but only one w is considered for simplicity in this
figure. E starts with a large value and decreases as iterations proceeds. If E is a
smooth function, i.e., if E were a smooth monotonically decreasing curve in Fig. 2.10,
E will eventually reach the global minimum, which is the real minimum. If, however,
there is a bump causing a shallow valley (Local minimum 1 in the figure) so to speak,
E may be trapped in this bump called a local minimum. E may be trapped in the
local minimum since this is the only direction where E decreases in this
neighborhood.

 28

 There are two problems associated to the local minima problem. One is how to
detect a local minimum, and the other is how to escape once it is found. A simple
practical solution is that if we find an unusually high value of E, we suspect a local
minimum. To escape the local minimum, we need to "shake up" the movement of E,
by applying (for example, randomized) higher values of Δwij's.
 However, we have to be cautious for the use of higher values of Δwij's in general,
including cases for escaping from a local minimum and for accelerating the iterations.
If not, we may have the problem of overshooting the global minimum; even worse,
we may be trapped in Local minimum 2 in the figure.

2.7 Simple Perceptrons

Typically, a backpropagation model neural network with no hidden layer, i.e., only
an input layer and an output layer, is called a (simple) perceptron. Although
practical applications of perceptrons are very limited, there are some theoretical
interests on perceptrons. The reason is that theoretical analysis of practically useful
neural networks is usually difficult, while that of perceptrons is easier because of
their simplicity. In this section, we will discuss a few well known examples of
perceptrons.

 Fig. 2.10. Local minima.

Perceptron representation

Representation refers to whether a neural network is able to produce a particular
function by assigning appropriate weights. How to determine these weights or
whether a neural network can learn these weights is a different problem from
representation. For example, a perceptron with two input neurons and one output
neuron may or may not be able to represent the boolean AND function. If it can, then
it may be able to learn, producing all correct answers. If it cannot, it is impossible for
the neural network produce the function, no matter how the weights are adjusted.
Training the perceptron for such an impossible function would be a waste of time.
The perceptron learning theorem has proved that a perceptron can learn anything it
can represent. We will see both types of function examples in the following, one

2 Neural Networks: Fundamentals and the Backpropagation Model

2.7 Simple Perceptrons 29

possible and the other impossible, by using a perceptron with two input neurons and
one output neuron.

Example. x1 AND x2 (Boolean AND)

This example illustrates that representation of the AND function is possible. The
AND function, y = x1 AND x2 should produce the following:

 x1 x2 y
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯

 0 0 0
 0 1 0
 1 0 0
 1 1 1

The following Fig. 2.11. shows a perceptron with two input neurons and one output
neuron,which is able to represent the boolean AND function. The activation function
is a step function with threshold: y = 0 for net < 0.5 and y = 1 otherwise.

Counter-example. x1 XOR x2 (Boolean XOR)

A perceptron with two input and one output cannot represent the XOR
(Exclusive-OR) function, y = x1 XOR x2:

Fig. 2.11. A perceptron for the boolean AND function

 x1 x2 y Point in Fig. 2.12
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0 A1
 0 1 1 B B1
 1 0 1 B B2
 1 1 0 A2

Here Points A1 and A2 correspond to y = 0, and Points BB1 and B2B to y = 1. Given a
perceptron of Fig. 2.12 (a), we would like to represent the XOR function by
assigning appropriate values for weights, w1 and w2. We will prove this is impossible
no matter how we select the values of the weights.
 For simplicity, let the threshold be 0.5 (we can choose threshold to be any
constant; the discussion is similar. Replace 0.5 in the following with k.) Consider a

 30

line: w1 x1 + w2 x2 = 0.5 (Fig. 2.12 (b)). At one side of the line, w1 x1 + w2 x2 > 0.5;
at the other side of the line, w1 x1 + w2 x2 < 0.5. Changing the values of w1, w2, and
the threshold will change the slope and position of the line. However, no line can
place

 (a) (b)

Fig. 2.12. Representation of the XOR function with a perceptron of (a) is impossible. No line
in (b) can place A1 and A2 on one side and B1 and B2 on the other side of the line.

A1 and A2 on one side and BB1 and B2B on the other side.
 XOR is said to be a linearly inseparable function. This means that no straight
line can subdivide the x1x2-plane to represent the function. Or, more generally, no
hyperplane can subdivide an n-dimensional space to represent the function.
Otherwise, when there is a line or hyperplane that can subdivide the space to
represent the function, it is called a linearly separable function.

Example. The previous x1 AND x2 problem is linearly separable:

 x1 x2 y Point in Fig. 2.13
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0 A1
 0 1 0 A2
 1 0 0 A3
 1 1 1 B B1

We can place A1, A2 and A3 on one side and BB1 on the other side of the line. Hence,
AND is linearly separable.

Example. The XOR problem for a neural network with a hidden layer.

This example (Fig. 2.14) demonstrates that a backpropagation model with two inputs
x1 and x2, one hidden layer, and one output y (i.e., this is not a perceptron), can
represent the XOR function as the following table. The activation functions are step
functions with thresholds: y = 0 for net < θ and y = 1 otherwise. That is, the network
output is 0 if the weighted sum of input < θ, is 1 otherwise. The two threshold values
are θ1 = 1.5 at neuron z and θ2 = 0.5 at neuron y. Fig. (a) is equivalent to Fig. (b),

2 Neural Networks: Fundamentals and the Backpropagation Model

2.8 Applications of the Backpropagation Model 31

which displays a layered network structure more explicitly than Fig. (a).

 Fig. 2.13. Demonstration of a linearly separable function, AND.

 x1 x2 net at z Output from z net at y y
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0 0 0 0
 0 1 1 0 1 1
 1 0 1 0 1 1
 1 1 2 1 0 0

 (a) (b)

Fig. 2.14.A neural network with a hidden layer that produces the XOR function.

 2.8 Applications of the Backpropagation Model

Earlier we saw an application of the backpropagation model for pattern recognition
of hand-written characters (Fig. 2.4). We might tend to think such two-dimensional
visual image recognition is a major application type of the backpropagation model,
but actual application domains are far more versatile than this single example. The
major reasons for this versatility are: 1) the input and output can have many origins
rather than only visual images; 2) the functions or application types of the network
can be other than recognition. Such versatility is common in many basic techniques.

 32

For example, take a case of statistics. Statistics can be applied to problems in many
disciplines: for example, social and economic data analysis such as for a census;
medicine for effectiveness study of a new drug; engineering for interpretation of
experimental results. Such versatility is true for the backpropagation model, other
neural network models, as well as other topics discussed in this book.

Input and output types of the backpropagation model

The very basic idea of the backpropagation model is that the neural network learns
mapping from the input of xi's to output yj's. In Fig. 2.4, we saw input of a
two-dimensional pattern converted to one-dimensional xi's. The following Fig. 2.15
illustrates some other forms of input. Fig. (a) shows a group of discrete input. For
example, the input can be instrument measurements for an iron furnace. The first
group, x1 through x4 are temperatures at different points in the furnace, the second
group are the pressures and the third group percentages of a specific chemical
component such as CO2, at the same corresponding points as the temperatures in the
furnace. As another example, the input can be some characteristic parameters for the
stock market. The first group may be the Dow Jones averages for the last four days,
the second group the total transaction volumes, and so forth.
 Fig. (b) shows a continuous spectrum. How much fine resolution should be taken
for xi's depends on the required accuracy and computational complexity. Again,
input of many applications has this form. For example, the input may be from
acoustic origin rather than visual. The abscissa may represent the frequencies of
sound, while the ordinate the intensity. The input may come from human speech for
voice recognition, or sonar signal from the bottom of an ocean to distinguish between
rock and metal (which may be an enemy submarine or a sunken ship). The input can
also be from electric or electromagnetic signals such as EKG in medicine,
speed/acceleration of a transportation equipment, any measurement from a machine
or appliance, etc. The input can be a some measurement for economic, finance, or
business decisions. In the last example, the abscissa can be time or any other attribute,
while the ordinate can be a dependent parameter such as gross national product or
sales amounts.

 (a) (b)

Fig. 2.15. Various forms of neural network input. (a) A group of discrete input. (b) Continuous
spectrum input.

2 Neural Networks: Fundamentals and the Backpropagation Model

2.9 General Remarks on Neural Networks 33

Application categories of the backpropagation model

Three major application categories of the backpropagation model are classification,
prediction, and control. These categories are for the convenience of easy
understanding, and should not be considered as exhaustive and rigid.
 The character recognition example discussed in Section 2.3 to determine whether
a given pattern is character 'A' or some other character is a simple classification
problem. The idea is to recognize and classify given patterns to typically much fewer
groups of patterns. The latter will be the output of the network for this type of
applications. This is accomplished by training the neural network using sample
patterns and their correct answers. When the neural network is properly trained, it
can give correct answers for not only the sample patterns, but also for new similar
patterns. As discussed above, the input can be in variety of forms, not just a visual
image.
 When using neural networks for prediction problems, time must be incorporated
as one factor. For example, suppose that a neural network is given many patterns
under different circumstances over a certain length of time. Given a similar pattern
in its earlier stage, the neural network may be able to predict the most likely pattern
to follow. Vital issues are whether the appropriate factors are included in the model
and whether they are accurately measured. For example, describing the correct
financial model to predict the stock market would be difficult.
 The control problem can be considered as a mapping problem from input, which
may include feed-in attributes and possible feedback, to output of control parameters.
The mappings of different input-to-output values can be viewed as patterns, and they
can be learned by a neural network. For example, consider controlling a steel furnace.
Inputs are various physical and chemical measurement distributions, such as
temperature, pressure, and various chemical components at different points within
the furnace. Outputs are the quantities to be supplied for the heat source, such as coal,
gas and air, raw material, and so forth. Many patterns representing various
input-to-output mappings can be learned by the neural network; then it can be used to
control the furnace. This is an example of plant control. The same basic concept can
be applied to various components of transportation equipments such as an airplane
and car, robots, and so on.

 2.9 General Remarks on Neural Networks

A bit of history

Although NN has a long history of research which dates back to 1943, the number of
researchers involved was very small for the first 40 years. It was in 1983 that the U.S.
DARPA (Defense Advanced Research Projects Agency) began funding neural
network research. Soon after, other funding organizations and countries followed
this initiative, and massive worldwide research began. Although there have been
theoretical developments, the early optimism about practical applications of neural
networks was not realized right away. For example, the learning process is difficult
for many real world applications. Thus, for many years, this area created many
research papers but few truly practical applications. However, this situation has

 34

changed during the 1990s. A good number of commercial and industrial applications
have been developed particularly in the U.S., Japan, and Europe.

A perspective of the neural network field as a discipline of AI

As stated in Chapter 1, There are two fundamentally different major approaches in
the field of AI. One is often termed "symbolic AI," which has been historically
dominant. It is characterized by a high level of abstraction and a macroscopic view.
 Classical psychology operates at a similar level. Classical AI areas such as
knowledge engineering or expert systems, symbolic machine learning, and logic
programming fall in this category. The second approach is based on low-level,
microscopic biological models, similar to the emphasis in physiology or genetics.
Neural networks and genetic algorithms are the prime examples of this latter
approach.
 The strength of neural networks is their capability to learn from patterns. This
learning can then be applied to classification, prediction, or control tasks, as
discussed in the previous section. Machine learning, the idea that the machine gets
smarter by itself, is an extremely attractive topic. Although the history of symbolic
machine learning is as old as the history of AI, its success in terms of real practicality
has been relatively limited. People are excited about the neural network approach
based on a different philosophy from traditional symbolic machine learning.
 Although neural networks are modeled on the human brain, their current state is
far from the realization of real intelligence. For one thing, we understand very little
about how the brain, the model for neural networks, actually generates intelligence.
There are significant differences in the physical characteristics of the brain and
neural networks. The number of neurons in the brain is on the order of 1011. The
total number of neurons in a parallel processing system is at most on the order of 105,
when we allocate a processor to each artificial neuron. The number of neurons in a
typical neural network is much fewer, say, O(10) to O(100). The processing speed
of a processor is, say, O(1) nanoseconds or 10-9 seconds, while that of a natural
neuron is much slower, O(1) milliseconds.
 Although the current neural networks are far from achieving real intelligence, they
have been employed for many interesting practical applications. They include
various types of pattern processing and applications to solve optimization problems.
 Many neural network models do not necessarily resemble their original biological
counterpart, the brain.

Advantages and disadvantages of neural networks

One major advantage of neural networks is that they complement symbolic AI. For
one, neural networks are based upon the brain, and for two, they are based on a totally
different philosophy from symbolic AI. For this reason, neural networks have shown
many interesting practical applications which are unique to neural networks.
 Another major advantage of neural networks is their easy implementation of
parallelism since, for example, each neuron can work independently. Generally,
developing parallel algorithms for given problems or models (e.g., search, sort,
matrix multiplication, etc.) is not easy. Other advantages often cited include:

Learning capability. Neural networks can learn by adjusting their weights.

2 Neural Networks: Fundamentals and the Backpropagation Model

2.9 General Remarks on Neural Networks 35

Robustness. For example, neural networks can deal with certain amount
of noise in the input. Even if part of a neural network is
damaged (perhaps similar to partial brain damage), often it
can still perform tasks to a certain extent, unlike some
engineering systems, like a computer.

Generalization. A neural network can deal with new patterns which are
similar to learned patterns.

Nonlinearity. Nonlinear problems are hard to solve mathematically.
Neural networks can deal with any problems that can be
represented as patterns.

The disadvantages of neural networks include the following: First, they have not
been able to mimic the human brain or intelligence. Second, after we successfully
train a neural network to perform its goal, its weights have no direct meaning to us.
That is, we cannot extract any underlying rules which may be implied from the neural
network. There has been some research work on this problem, but our statement is
still true. A big gap remains between neural networks and symbolic AI. Perhaps this
situation is essentially the same for the brain - the brain performs at a high level of
intelligence, but when we examine it at the physiological level, we see only
electrochemical signals passing throughout the natural neural network. A
breakthrough for connecting the micro- and macroscopic phenomena in either area,
artificial or natural neural networks, may solve the problem for the other. A solution
for either area, however, appears unlikely to come in the near future.
 Third, computation often takes a long time, and sometimes it does not even
converge. A counter-argument against this common problem of long time training is
that even though it may take a month of continuous training, once it is successful, it
can be copied to other systems easily and the benefit can be significant. Fourth,
scaling up a neural network is not a simple matter. For example, suppose that we
trained a neural network for 100 input neurons. When we want to extend this to a
neural network of 101 input neurons, normally we have to start over an entire training
session for the new network.

Hybrid systems

 One of the recent trends in research is combining neural networks and various
other areas - such as fuzzy systems, genetic algorithms and expert systems - to create
hybrid systems. The fundamental concept behind such hybrid systems is for each
component to complement each other's weakness, thus creating new approaches to
solve problems. For example, there are no capabilities for machine learning in fuzzy
systems. Fuzzy systems do not have capabilities of memorizing and recognizing
patterns in the way neural networks do. Fuzzy systems with neural networks may
add these capabilities. A neural network may be added to an expert system as a front
or back end, analyzing or creating patterns.

 36

Further Reading

The two volumes by Anderson, et al. include many reprinted seminal articles. The
two volumes by Rumelhart/McClelland are very frequently cited references.

J.A. Anderson and E. Rosenfeld (Eds.), Neurocomputing: Foundations of Research,
 MIT Press, 1988.
J.A. Anderson, A. Pellionisz and E. Rosenfeld (Eds.), Neurocomputing 2: Directions
 for Research, MIT Press, 1990.
L. Fausett, Fundamentals of Neural Networks, Prentice-Hall, 1994.
R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1990.
J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation,
 Addison-Wesley, 1991.
S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice-Hall,
 1999.
B. Müller, J. Reinhardt and M.T. Strickland, Neural Networks: An Introduction, 2nd
 Ed., Springer, 2002.
D.E. Rumelhart, J.L. McClelland and the PDP Research Group (Eds.), Parallel

Distributed Processing, Vols. 1 and 2, MIT Press, 1986 (especially Vol. 1, Chapter
8 for the backpropagation model).

There are many journals that carry articles in the field including the following.

IEEE Transactions on Neural Networks.
Neural Networks, Elsevier Science.

Also many, often very thick, conference proceedings have been published by several
organizations.

2 Neural Networks: Fundamentals and the Backpropagation Model

3 Neural Networks:
Other Models

3.1 Prelude

There are many other models of neural networks in addition to the backpropagation
model discussed in the previous chapter. Although the backpropagation model is the
one most widely employed for practical use, other models have interesting
applications. In this chapter we will discuss major characteristics that can be
associated to neural networks and several selected other models.

Characteristics that derive different neural network models

As stated before, the basic building block of every neural network model is a neuron,
described already in Section 2.2. Although we start with the same building blocks,
there are many neural network models. The reason is that there are various
characteristics associated with the neural networks, and by selecting different
characteristic values, we can come up many different models. As an analogy, we can
make different foods using the same materials but by performing different methods
of cutting, seasoning, and cooking. It is sometimes overwhelming to understand
exact definitions of many models and their variations, especially at the beginning.
One reasonable approach may be to study a few well-known selected models,
understand the nature of their associated characteristics, and extend the concepts
learned to further additional models whenever necessary.
 The following list includes some of the characteristics associated with various
types of neural networks and their typical meanings. The meanings of some of the
characteristics will become clearer when we study specific models with these
characteristics. Often, there are many variations of these networks and the following
describes the most common scenarios.

Multilayered/non-multilayered - Topology of the network architecture

Multilayered
The backpropagation model is multilayered since it has distinct layers such as input,
hidden, and output. The neurons within each layer are connected with the neurons of
the adjacent layers through directed edges. There are no connections among the
neurons within the same layer.

3 Neural Networks: Other Models

38

Non-multilayered
We can also build neural network without such distinct layers as input, output, or
hidden. Every neuron can be connected with every other neuron in the network
through directed edges. Every neuron may input as well as output. A typical example
is the Hopfield model.

Non-recurrent/recurrent - Directions of output

Non-recurrent (feedforward only)
In the backpropagation model, the outputs always propagate from left to right in the
diagrams. This type of output propagation is called feedforward. In this type, outputs
from the input layer neurons propagate to the right, becoming inputs to the hidden
layer neurons, and then outputs from the hidden layer neurons propagate to the right
becoming inputs to the output layer neurons. Neural network models with
feedforward only are called non-recurrent. Incidentally, "backpropagation" in the
backpropagation model should not be confused with feedbackward. The
backpropagation is backward adjustments of the weights, not output movements
from neurons.

Recurrent (both feedforward and feedbackward)
In some other neural network models, outputs can also propagate backward, i.e.,
from right to left. This is called feedbackward. A neural network in which the
outputs can propagate in both directions, forward and backward, is called a
recurrent model. Biological systems have such recurrent structures. A feedback
system can be represented by an equivalent feedforward system (see Rumelhart, et al.,
1986, Vol. 1, p. 355).

Supervised/unsupervised learning - Form of learning

Supervised learning
For each input, a teacher knows what should be the correct output and this
information is given to the neural network. This is supervised learning since the
neural network learns under supervision of the teacher. The backpropagation model
is such an example, assuming an existence of a teacher who knows what are correct
patterns. In the backpropagation model, the actual output from the neural network is
compared with the correct one, and the weights are adjusted to reduce the difference.

Unsupervised learning
In some models, neural networks can learn by themselves after being given some
form of general guidelines. There is no external comparison between actual and ideal
output. Instead, the neural network adjusts by itself internally using certain criteria
or algorithms - e.g., to minimize a function (e.g., "global energy") defined on the
neural network. Such form of learning is called unsupervised learning.
(Unsupervised learning does not mean no guidance is given to the neural network; if
no direction is given, the neural network will do nothing.)

3.1 Prelude

39

Binary/bipolar/continuous input - Types of input values

We can assume different types of input values. The most common types are binary
(i.e., an input value is restricted to either 0 or 1), bipolar (an input value is either -1
or 1), and continuous (i.e., continuous real numbers in a certain range).

Activation functions of linear, step, sigmoid, etc. - Forms of activation
functions

Various activation functions can be used, including those discussed in Section 2.2.

We will see examples of these various characteristics as we discuss other neural
network models in this chapter. Some well known neural network models and their
associated typical characteristics are:

Backpropagation: multilayered, nonrecurrent, supervised
Hopfield: non-multilayered, recurrent, supervised
Kohonen: multilayered, nonrecurrent, unsupervised
Boltzmann machine: non-multilayered, recurrent, supervised/unsupervised

Organization of neural network models

We can organize neural network models based on these different criteria. The
following are based on the two most common criteria, with over-simplified entries
for simplicity.

1. Based on the functional characteristics

Functional Characteristics Representative Model
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Pattern classification Backpropagation
Associative memory Hopfield
Optimization Hopfield-Tank
Clustering Kohonen
Clustering, optimization Boltzmann machine

2. Based on specific models, often named after the original developer

Model Functional Characteristics
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Backpropagation Pattern classification
Hopfield Associative memory
Hopfield-Tank Optimization
Kohonen Clustering
Boltzmann machine Clustering, optimization

 Both ways of organizations are used in the literature. Some authors may prefer the
first organization since it addresses what types of functions or tasks the neural
network models are aimed to perform. Although there is only one entry in each
functional characteristic listed above, often there is more than one model aimed to

3 Neural Networks: Other Models

40

perform the same type of task. Grouping models for the same tasks would be
convenient to compare alternative approaches to tackle the problem.
 Historically, however, the second type of organization preceded the first type.
These models were developed by certain researchers, and people referred to these
models by the developers' names; thus the names were and still are popular. It is
probably easier to remember and identify these models by their names rather than by
their functional characteristics. In this book, we will basically use the second method
of organization, since the objective here is to introduce the basics rather than to
provide an extensive coverage of the field. With this introductory background, we
will be able to understand extensions of the basics whenever necessary.

3.2 Associative Memory

In Webster's New World Dictionary, "association" is described as "a connection in
the mind between ideas, sensations, memories, etc." The human brain can associate
different types of inputs; for example, we can associate a visual appearance and voice
with a specific person. We can also associate modified values of the same type of
inputs. We can recognize a picture of a person, for instance, or the face of a friend
we have not seen for ten years.
 Ordinary computer memory is non-associative. That is, an exact memory address
must be specified, and the only information at this address is retrieved. Certain types
of neural networks can be used as associative memory (or content-addressable
memory). Associative memory is a type of neural network that can map (associate)
inputs, which are contents rather than addresses, to information stored in memory.
That is, given an input (which may be partial, noisy, or may contain an error), the
network can retrieve a complete memory which is the closest match to the input.
Mathematically, this property can be stated as mapping an input vector x to the
closest vector x(s) among vectors x(1), x(2), ..., x(m). To implement an associative
memory, we can use a recurrent neural network and select appropriate weights in
such a way that desired stable outputs will come out for given inputs.
 For example, suppose "H.A. Kramers & G.H. Wannier, Phys. Rev. 60, 252
(1941)" is stored in the computer memory. By giving sufficient partial information,
such as "& Wannier, (1941)", our associative memory would be capable of retrieving
the entire memory. An ideal memory could deal with errors and retrieve this memory
even from input "Vannier, (1941)" [Hopfield, 1982]. The following is another simple
example of associative memory.

Example. Pattern association.

Fig. 3.1(a) shows six exemplar patterns of the characters "1," "A," "X," "Y," "Z," and
"C." Each pattern is drawn on a 10 × 12 pixel board, which can be converted to a
one-dimensional array or a vector of 10 × 12 = 120 components. Note that the
two-dimensional view is only for human perception; the computer does not
understand these patterns as two-dimensional. The value of each vector element is -1
if the corresponding pixel on the board is white (blank), 1 if black. Fig. 3.1(b)

3.3 Hopfield Networks

41

shows how a noisy input pattern converges to the closest exemplar pattern during
iterations. These figures were drawn by my graduate student Bill Leach. The m = 6
exemplar patterns can be denoted as vectors x(1), x(2), ..., and x(6), and the noisy input
vector as x. This type of pattern association can be implemented by using associative
memory, such as the Hopfield network discussed in the next section.

(a)

(b)

Fig. 3.1. Demonstration of associative memory by pattern association. (a) Six exemplar
patterns. (b) A noisy input pattern approaches its closest exemplar pattern.

Many types of associative memories have been proposed. In this chapter, we
illustrate the basic idea by the Hopfield network.

3.3 Hopfield Networks

The Hopfield network model is probably the second most popular type of neural
network after the backpropagation model. There are several versions of Hopfield
networks. They can be used as associative memory, as we will discuss in this section,
and they can also be applied to optimization problems, as we will study in the next
section. The version for the associative memory is classified as supervised learning
by some authors and as unsupervised by others, with the distinction based on the
authors’ interpretation of the definitions. Given that the network performs pattern
association under the supervision of a teacher, we use the former definition in this
book.
 The basic idea of the Hopfield network is that it can store a set of exemplar
patterns as multiple stable states. Given a new input pattern, which may be partial or
noisy, the network can converge to one of the exemplar patterns that is nearest to the
input pattern. This is the basic concept of applying the Hopfield network as
associative memory.

3 Neural Networks: Other Models

42

Architecture

As shown in Fig. 3.2, a Hopfield network consists of a single layer of neurons, 1, 2, ...,
n. The network is fully interconnected; that is, every neuron in the network is
connected to every other neuron. The network is recurrent; that is, it has
feedforward/feedbackward capabilities, which means input to the neurons comes
from external input as well as from the neurons themselves internally.

Fig. 3.2. A Hopfield network configuration.

Each input/output, xi or yj, takes a discrete bipolar value of either 1 or -1. The number
of neurons, n, is the size required for each pattern in the bipolar representation. For
example, suppose that each pattern is a letter represented by an 10 × 12
two-dimensional array, where each array element is either 1 for a black square or -1
for a blank square (for example, Fig. 3.1). Then n will be 10 × 12 = 120.
 Each edge is associated by weight, wij, which satisfies the following conditions:

wij = wji for all i, j = 1, n

and

wii = 0 for all i = 1, n.

(Because wii = 0, the self-coupling edge of Neuron i, i.e., the edge from Neuron i to
Neuron i, can be considered as "not connected.") The values of wij are specified in
advance from exemplar patterns and fixed as we will see in the following example.

Computational procedures

Determining wij

Suppose that m exemplar patterns are presented (s = 1, m). Each pattern x(s) has n
inputs, x1

(s), x2
(s), ..., xn

(s) , where xk
(s) = 1 or -1. Determine wij for i, j = 1 to n by:

3.3 Hopfield Networks 43

 0 for i = j

 wij = () ()

1

m
s s

i j
s

x x
=
∑ for i ≠ j

After this determination of wij, the values of wij's are not changed. This feature is
different from the backpropagation model, where wij's are changed as the learning
process proceeds. The Hopfield network is classified under supervised learning since
at the beginning it is given correct exemplar patterns by a teacher.
 Interpretation of wij is as follows. For a given pattern s, if xi

(s) = 1 and xj
(s) = 1 (i.e.,

both neurons i and j are active), or if xi
(s) = -1 and xj

(s) = -1 (i.e., both neurons are
inactive), then xi

(s)xj
(s) = 1 and a positive contribution to wij results. If this occurs for

the majority of m patterns, then wij > 0, i.e., the synapse between neurons i and j
becomes excitatory. The higher the number of such patterns, the more excitatory the
synapse.
 On the other hand, if xi

(s) = 1 and xj
(s) = -1, or if xi

(s) = -1 and xj
(s) = 1 (i.e., if xi

(s)xj
(s)

= -1), then a negative contribution to wij results. If this occurs for the majority of
patterns, then wij < 0, i.e., the synapse becomes inhibitory.

New input xi(0), and xi

Every input xi(0) and xi is bipolar (i.e., either -1 or +1). The initial values of xi(0), i
= 1, n are given at time t = 0. Let neti(t) = Σn

j=1 wijxj(t). Then xi(t+1), for i = 1 to n is
determined as follows:

 1 if neti(t) > θi
 xi(t+1) = xi(t) if neti(t) = θi
 -1 if neti(t) < θi

Here θi are the thresholds. θi are usually set to 0.
 The neurons are updated one at a time for a specific value of i by xi(t+1) ← xi(t).
The only constraint on the updates is that all the neurons must be updated at the same
average rate. Often the neurons are picked out at a uniformly random rate. Starting
with a given initial input xi(0), xi(t) can converge to the closest stored pattern.
 An intuitive interpretation of this process follows. Assume that we have a small
number of uncorrelated exemplar patterns in comparison with the number of neurons.
neti in the above formula at iteration step t can be expressed by using the following
definitions for neti and wij:

 neti =
1

n

ij j

j

w x
=
∑

= () ()

1, 1

s s
n m

i j j

j j i s

x x x
= ≠ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

 = () ()

1 1,

s s
m n

i j

s j j i

jx x x
= = ≠
∑ ∑

3 Neural Networks: Other Models 44

At the last step, we swapped the two summations (one for s and the other for j) since
they are independent, and factored xi

(s), which does not depend on j, outside of
Σn

j=1, j≠i.
 Now imagine that the unknown input pattern x closely resembles a specific
exemplar pattern x(s') and is totally uncorrelated to the remaining exemplar patterns.
The last factor Σn

j=1, j≠i xj
(s) xj will have a large value for the close exemplar pattern

since x(s') xj will be 1 for most of j (this is because when xj is 1, x(s') is likely to be 1,
and when xj is -1, xj

(s') is likely to be -1). If xj and xj
(s') completely match for all of j

except j = i, the summation will be n - 1. The first factor, x(s') is multiplied by the large
second factor and will significantly contribute toward neti. On the other hand, the
second factor, Σn

j=1, j≠i x(s) xj, will be much smaller for the remaining uncorrelated
exemplar patterns. This is because sometimes both xj and xj

(s') have the same value
(either 1 or -1), resulting in xj

(s) xj = 1; some other times xj and xj
(s') have opposite

values, resulting in xj
(s) xj = -1; thus, the 1's and -1's cancel out, yielding a small sum.

This implies that the contributions from the remaining patterns toward neti are small.
The overall effect is that x(t+1) of the next iteration step will be closer to x(s'), or
xi(t+1) will be closer to xi

(s') in terms of each component.
 The actual outcome of the converged solution may not necessarily be the closest
matched exemplar pattern. It can be some other exemplar pattern or a pattern
different from any of the exemplar patterns. To reduce the probability of such an
error, the number of exemplar patterns, m, should be less than 0.15n [Hopfield, 1982].
In practice, m is typically kept well below 0.15n. Several factors affect the outcome
of a converged solution. They include the ratio m/n, correlation among the exemplar
patterns, the initial values of xi(0)'s, and the updating processes (the scheme of
picking out the neurons and the random number seeds).

Energy function

Define E, an energy (or Lyapunov) function, as:

 E =
1 1 1

1

2
() () ()

n n n

ij i j i i
i j i

w x t x t x tθ
= = =

− +∑∑ ∑

We can prove that as iterations proceed, E always decreases when xi(t) changes the
value, and E stays the same when there is no change in xi(t)'s.
 When we think of the term "energy," we think of a physical quantity such as
kinetic or electric energy. This was probably the idea when the equation was
originally defined, but we interpret our energy in much a broader sense in our
applications. The term "energy" here represents a measure that reflects the state of the
solution, and is somewhat analogous to the concept of physical energy.

Basic processing steps

 Step 1. Storing exemplar patterns as preprocessing.

Determine wij for i, j = 1, n, for exemplar patterns using the
"Determining wij" procedure described above.

3.3 Hopfield Networks

45

 Step 2. Finding the closest matching exemplar pattern to given input
representing an unknown pattern.

At t = 0, apply given input xi(0), i = 1, n.

Perform iterations updating xi(t)'s until the energy function E stops
decreasing (or, equivalently, xi(t)'s remain unchanged). Then xi(t)
represents the solution, that is, the exemplar pattern that best matches
(associates to) the unknown input. The converged xi(t) can be sent out
externally as output yi.

Implementation considerations of Step 2 above

There are two conditions:

1. Selection of neurons. Each neuron is picked out at uniformly random, independent

of other neurons, and at the same average rate. For each neuron xi, the new value
updates the value of xi, and will be used in the computation of other neurons (and
xi itself, if it is picked up again).

2. Convergence. If and only if a neuron changes its state, then the energy decreases.
A solution is converged upon if all the neurons are updated without any change.

The following are possible methods for examining the above conditions.

1. Select i = 1, 2, ..., n, in this order (this is an epoch). Test for convergence. If not

converged, then go to the next epoch. This method violates Condition 1 (it is not
random).

2. Select i from 1 to n, at a uniformly random rate, independent of other neurons, n
times (this is an epoch). Test for convergence. If not converged, then go to the next
epoch. This method violates Condition 2 (some neurons may not be updated).

3. Select a unique i every time from 1 to n, in random order, n times; that is, every
number between 1 to n is picked up once and only once (this is an epoch). Test for
convergence. If not converged, then go to the next epoch. This method can be
implemented by randomly permuting numbers 1 to n, then picking out one number
at a time in order. This method violates Condition 1 (neurons are not picked out
independently of other neurons, because the probabilities of neurons being picked
out gets higher when they have not been picked out).

4. Select i from 1 to n, at a uniformly random rate, independent of other neurons, until
every neuron is updated at least once (this is an epoch). Test for convergence. If
not converged, then go to the next epoch.

A possible implementation of Method 4 is: Define an “update vector,” q = (q1, . . ., qn),
where qi = 1 if xi has been updated at least once since the beginning of the epoch,
otherwise qi = 0. For each epoch,
Initialize: q = 0, i.e., qi = 0 for i = 1, n. count = n, where count is the number of
non-updated neurons.
Repeat: Every time xi is updated, check qi. If qi = 0, then set qi = 1 and c = c – 1; if c =
0, then the end of the epoch is reached.
This last method has no violation of either Condition 1 or Condition 2. Methods 1, 2

3 Neural Networks: Other Models

46

and 3 involve Condition 1 or 2 violation, but they seem to be used in practice. My
students experimented with Methods 1 through 4. For midsize problems (say, n = 120),
Method 4 took about 5 to 7 times the number of iterations of the other three for an
epoch. The number of epochs required for the network to converge was about the same
for all the methods.

Example.

The pattern association example (Fig. 3.1) can be implemented by the Hopfield
network architecture and algorithm discussed in this section. The network has 120
neurons. In Step 1, the network stores m = 6 exemplar patterns given in Fig. 3.1(a),
by assigning appropriate values of wij. At t = 0 in Step 2, the network is given the
unknown pattern (the first pattern in Fig. 3.1(b), xi, i = 1, 120). During the subsequent
iterations, xi(t) will gradually converge to the exemplar pattern"A" that matches the
unknown input.

3.4 The Hopfield-Tank Model for Optimization Problems:
The Basics

We will now discuss a neural network model which is particularly popular in
optimization problems. In their 1985 article, Hopfield and Tank reported that the
traveling salesman problem (TSP) can be solved much faster by using their model
than by using existing methods. Although the model does not necessarily determine
the optimal solution, it can find solutions which are close enough for practical
purposes. This was a blockbuster for the computing community, since solving
NP-complete problems in an efficient way has been a major obstacle. Soon after the
publication of the article, several papers came out which contested Hopfield and
Tank's claims. Since then, however, more and more application problems have been
solved using the model, and it has become a major optimization technique. Since
optimization problems are very common and important in many disciplines, such as
engineering and management, this model will be a valuable alternative to other
classical techniques found in calculus and operations research.
 In this section, we will discuss the basics of the Hopfield-Tank technique; in the
next section, we will study some application examples and provide a brief general
guideline to apply the model to optimization problems. We will describe the model in
a one-dimensional case since it is fundamental and easy to understand. We will then
extend it to a two-dimensional configuration, since for certain problems this
approach is more efficient. Extensions for higher dimensions can be done similarly.

3.4.1 One-Dimensional Layout

Imagine that n neurons, i = 1 to n, are one-dimensionally laid out. Weight wij is
associated with the edge from neuron i to neuron j. Assume the symmetric property
for the weights, wij = wji.

47

Computational procedures

Basic equations

The equations of motion are given as follows:

1

n
i

i ij j

j

du
u w V

dt =

= − + +∑ iI for i = 1, n (1)

(1) () it t

i i
du

u u
dt

+ = + ⋅ t for i = 1, n (2)

{ }
0

1
() 1 tanh

2
j

j j
u

V g u
u

= = + for j = 1, n (3)

The energy function is defined as follows:

1 1 1

1
2

n n n

ij i j i i

i j i

E w V V V I
= = =

= − −∑∑ ∑ (4)

In the above, ui is the net input, Vi is the output, and Ii is the external input for neuron
i; wij, Ii, for i, j = 1, n, and u0 are constant values determined appropriately by the
problem characteristics. In equation (2), ui

(t) represents ui at time step t, and Δt is a
small constant representing a time increment on each step. Equation (3) for Vj is a
sigmoid function between 0 and 1 (Fig. 3.3). Note that the smaller the value of u0, the
steeper the slope of the graph. Recall that tanh x = (ex - e-x)/(ex + e-x). The problem is
to determine Vi for i = 1, n in such a way that energy E in equation (4) becomes
minimum.
 As mentioned in the previous section, the term "energy" should be interpreted in
a broader sense rather than physical energy. For example, in optimization problems,
our energy can be a cost, time, or distance to be minimized. Similarly, by the
equations of motion, we might imagine physical kinetic equations for a hard ball
rolling on a frictionless hard surface. Rather, theses equations should be interpreted
in a much broader sense in applications; the basic idea is that these equations force
our solution to the desired direction.

Iteration process to determine Vi for i = 1, n

Initialization

 Step 0. Choose ui at t = 0 (may be denoted as ui
(0)) at random; for example,

3.4 The Hopfield-Tank Model for Optimization Problems: The Basics

3 Neural Networks: Other Models

48

Fig. 3.3. A sigmoid function for V in terms of u.

ui
(0) = u0 + δui

where δui is a random number chosen uniformly in the interval of -0.1
u0 ≤ δui ≤ 0.1 u0. Also, choose a large positive number as a dummy
initial value of E.

Iteration. Repeat the following steps until E stops decreasing.

 Step 1. Compute Vj from uj by equation (3) for j = 1, n.

 Step 2. Compute E using equation (4).

 Step 3. Compare the current E(t) with E(t-1), the E value one iteration before.

(i) If E(t) ≥ E(t-1), stop iteration; Vj, for j = 1, n are the solutions.
(ii) Otherwise continue (go to Step 4).

 Step 4. Using equation (1) compute dui/dt for i = 1, n. Using equation (2),

compute ui for i = 1, n for the next iteration step. (Go to Step 1.)

3.4.2 Two-Dimensional Layout

There are many interesting application problems that can be associated with an n ×
n square matrix. For these problems, representing the previously discussed variables
and expressions in two-dimension form is convenient. For easy understanding, we
discuss one- and two-dimensional configurations in two steps. The major difference
in two-dimensional configuration is the way the variable subscripts are represented.
The variables with a single subscript in the one-dimensional case will be replaced
with variables with double subscripts.
 An alternative method to the two-dimensional approach covered in this subsection
is to "spread out" the two-dimensional elements into one-dimensional arrangement
and use the previous procedures. For an n × n two-dimensional array, the spread-out
subscripts will be: 1, 2, ..., n, n + 1, ..., n2. The idea can be extended to
higher-dimensions.

3.5 The Hopfield- Tank Model for Optimization Problems: Applications

49

 Imagine that n2 neurons are laid out two-dimensionally, in the same configuration
as the elements in an n × n square matrix. The neurons are identified by row and
column numbers; Neuron ik is the i-th row, k-th column unit. The entire set of
neurons can be represented as Neuron ik, for i = 1, n and k = 1, n. The weight
associated with the edge from neuron ik to neuron jℓ is denoted as wik,jℓ. We can
obtain the basic equations for two-dimensional layout by replacing the subscripts and
summations in the one-dimensional case as: i by ik, j by jℓ, Σi by Σi Σk, and Σj by Σj
Σℓ.

Computational procedures

Basic equations

The equations of motion are given as follows:

,
ik

ik ik j j ik

j

du
u w V

dt
= − + +∑∑ I for i = 1, n and k = 1, n (1')

(1) () ikt t
ik ik

du
u u

dt
+ = + ⋅ t for i = 1, n and k = 1, n (2')

{ }
0

1
() 1 tanh

2
j

j j
u

V g u
u

= = + for j = 1, n and ℓ = 1, n (3')

The energy function is defined as:

,
1
2

ik j ik j ik ik

i k j i k

E w V V V I= − −∑∑∑∑ ∑∑ (4')

The iteration process is the same as before except that n2 (instead of n) values of uik
and Vik are computed.

3.5 The Hopfield-Tank Model for Optimization Problems:
Applications

3.5.1 The n-Queen Problem

We now consider a simple example to illustrate how the basic equations are set up
and how iterations proceed for a specific problem. Our simple example is the n-queen
problem, which happens to be NP-complete (which means computationally hard).
 Probably most of us are already familiar with the n-queen problem. On an n × n
chessboard, a queen can move any number of squares up, down, to the right, to the
left, and diagonally. Fig. 3.4 (a) illustrates a possible move for a queen for a case of
n = 5. The problem is to determine n "safe" positions for n queens. A safe position
means that none of the queens can move to a square occupied by another queen in

3 Neural Networks: Other Models

50

only one move. Obviously there must be one and only one queen in each row and
column. (If two or more queens are in a row or column, then one would be attacked
by another; if no queens are in a row or column, there must be a row or column that
has more than one queen.) Similarly, there must be at most one queen in each
diagonal direction (since there can be no queen in a diagonal direction). Fig. 3.4 (b)
is a solution for n = 5; generally, a solution is not unique for a specific value of n.

 (a) (b)

Fig. 3.4. The n-queen problem illustration for n = 5. (a) A possible move of a queen. (b) A
solution.

Formulation of the problem

Conditions to be satisfied

1. Exactly one queen in each row.
2. Exactly one queen in each column.
3. At most one queen in upward diagonal (from left-bottom to right-top) (Fig.

3.5(a)).
4. At most one queen in downward diagonal (from left-top to right-bottom) (Fig. 3.5

(b)).

Diagonal position representations

Given a square position (i, j) on the chessboard, its diagonal positions can be
represented as follows (Figs. 3.4 and 3.5).

Upward diagonal: (i+k, j+k), where k = max [1-i, 1-j] to min [n-i, n-j].

Downward diagonal: (i+k, j-k), where k = max [1-i, j-n] to min [n-i, j-1].

3.5 The Hopfield- Tank Model for Optimization Problems: Applications

51

 (a) (b)

Fig. 3.5 (a) Upward diagonal (from left-bottom to right-top) squares. (b) Downward diagonal
(from left-top to right-bottom) squares.

The following Fig. 3.6 (a) and (b) illustrate two examples for upward diagonal
positions.

Fig. 3.6.Two examples of upward diagonal positions.

 In Fig. 3.6 (a), (i, j) is (4, 2), and k = -1, 0, and 1 for (i +k, j + k) will give the three
diagonal positions, (3, 1), (4, 2) and (5, 3), respectively. Similarly, in Fig. 3.6 (b), (i,
j) is (2, 4), and k = -1, 0, and 1 for (i + k, j + k) will represent the three diagonal
positions, (1, 3), (2, 4) and (3, 5), respectively. In general, the range of k for the
upward diagonal must satisfy (1 ≤ i + k ≤ n) and (1 ≤ j + k ≤ n) to stay inside of the
range of the chessboard. By moving i and j to the outer expressions, we have (1 - i ≤
k ≤ n - i) and (1 - j ≤ k ≤ n - j). For the lower bound of k, k must satisfy both 1 - i ≤ k
and 1 - j ≤ k, which means k must be greater than or equal to whichever the larger of
1 - i and 1 - j. Hence, the lower bound of k is max[1 - i, 1 - j]. Similarly, the upper
bound of k is min[n - i, n - j].
 For downward diagonal, k must satisfy (1 ≤ i + k ≤ n) and (1 ≤ j - k ≤ n) to stay
inside of the chessboard. This leads to the range of k as max [1 - i, j - n] to min [n -
i, j - 1].

Definition of Vij
 0 if no queen on ij-location
 Vij = 1 otherwise

3 Neural Networks: Other Models

52

Since Vij represents a solution, and our solution should give either "yes queen" or "no
queen" for each square, the above is a reasonable definition for Vij.

Basic equations

Now we define our equations in such a way to drive our solution in a better and better
direction in terms of satisfying the conditions. The equation of motion for duij/dt can
be defined either to increase or decrease uij, which in turn either to increase or
decrease Vij. To increase uij, we should make duij/dt > 0; to decrease uij, we should
make duij/dt < 0; in case we want to keep the current value of uij, we should make
duij/dt = 0. With these considerations in mind, we propose the following equation of
motion.

[]
[]

()

[]
[]

()

1 1

, ,

max 1 ,1 max 1 ,
to min , to min , 1
and 0 0and

1 1
n n

ik kjij

k k

i k j k i k j k

k i j k i j n
n i n j n i j

k k

V Vdu
dt

V V

= =

+ + + −

= − − = − −
− − − −

≠ ≠

⎧⎛ ⎞ ⎛ ⎞− + − +⎪⎜ ⎟ ⎜ ⎟= −⎨⎝ ⎠ ⎝ ⎠
⎪
⎩

⎫⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟⎪⎜ ⎟ ⎜+ ⎬

⎜ ⎟ ⎜
⎟
⎟⎪⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎭

∑ ∑

∑ ∑
⎠

On the right-hand side of the equation, we have four terms. Let us examine the

effect of the first term: (Σn
k=1 Vik - 1) (which is inside of -{...}). Our definition of Vij

is: Vij = 0 if no queen, at square ij, Vij = 1 otherwise. Thus, the sum Σn
k=1 Vik adds up

the values of V in column i. If there is one queen in column i (which is ideal for the
column), Σn

k=1 Vik will be 1, and the first term (Σn
k=1 Vik - 1) will be zero; i.e., no

first-term effect to duij/dt, or change in uij caused by the first term. If there is no queen
in column i, Σn

k=1 Vik will be 0, and the first term (Σn
k=1 Vik - 1) will be negative, or

more precisely, -1. Then - { (Σn
k=1 Vik - 1)} will be positive, and this term will

contribute to duij/dt > 0, i.e., it will increase uij. The effect is to increase Vij, the
number of queens in this column. If there is more than one queen in column i, Σn

k=1
Vik will be greater than 1, and the first term (Σn

k=1 Vik - 1) will be positive. The effect
is the opposite of no queen in the column. Furthermore, if there are many queens in
the column, the magnitude of the effect will be even greater. The effect is to decrease
Vij, the number of queens in this column. The second term is exactly the same as the
first term except that it is for row j.
 The third and fourth terms inside of -{...} correspond to the upward and downward
diagonals, respectively. The idea for these terms is somewhat similar to that of the
first and second terms. For example, for the third term, Σk = max [1-i, 1-j] to min [n-i, n-j]

and (k≠0) Vi+k,j+k, we add up the values of V's along the upward diagonal except Vij, the
one in the column i, row j position. If there are one or more queens along the diagonal
line, this term will be positive, i.e., -{Σk=.. Vi+k,j+k} will be negative, and affects to
reduce the value of uij, i.e., to make Vij =0. If there is no queens along the diagonal
line, this term will be zero, no effect to the value of uij, i.e., it means to keep the

3.5 The Hopfield- Tank Model for Optimization Problems: Applications

53

current value of Vij.
 The energy function can be defined as:

2 2

1 1 1 1

, ,

(0) (0)

1 11
2

ik

n n n n

kj

i k j k

i k j k ij i k j k ij

i j k k i j k k

V V
E

V V V V

= = = =

+ + + −

≠ ≠

− + − +
=

+

⎧ ⎛ ⎞ ⎛ ⎞
⎪ ⎜ ⎟ ⎜ ⎟⎨ ⎝ ⎠ ⎝ ⎠
⎪
⎩

⎫
⎬
⎭

∑ ∑ ∑ ∑

∑∑ ∑ ∑∑ ∑

The sigmoid function for Vjℓ can be defined as,

0

1
1 tanh

2
j

j
u

V
u

= +⎛ ⎞
⎜ ⎟
⎝ ⎠

Since our goal is to make Vjℓ = 0 or 1, we can choose a small value of u0 (e.g, 0.1) (Fig.
3.7).

Fig. 3.7. The sigmoid function Vjℓ = 1/2 {1 + tanh (ujℓ / u0)} with small u0.

Alternatively, we can choose even a simpler function for Vjℓ in terms of ujℓ as follows.

 1 for ujℓ ≥ 0
 Vjℓ =
 0 ujℓ < 0

Note. In this example, the equation of motion does not have -uij and Iij terms
discussed for general cases.

Termination condition of iterations

3 Neural Networks: Other Models

54

We can continue until E = 0, rather than E(n+1) ≥ E(n) to avoid a possible local minima,
where (n) represents the n-th iteration.

3.5.2 A General guideline to apply the Hopfield-Tank model to

optimization problems

After studying a specific application of the Hopfield-Tank model to the n-queen
problem, we are now in a better position to understand how to apply the model to
other optimization problems. Here is a guideline.

• Define Vij so that they can represent solutions of the problem. (e.g., Vij = 0 means
no queen, 1 means yes queen)

• Define an equation of motion as:

{ }function of ij
ij

V
du
dt

= −

 in such a way that uij tends to decrease when Vij is supposed to decrease, and
conversely, uij tends to increase when Vij is supposed to increase.

• Values of wij are fixed by the equation of motion.

• Values of Vij change through changes of uij. In turn, the changes of uij are affected
by the changes of Vij. The changes of Vij are much slower than those of uij, because
of commonly used activation function forms. For example, in Fig. 3.7, the value of
V stays the same as either 0 or 1 for most values of u. That is, uij changes frequently;
Vij changes occasionally after significant changes of uij.
• Classical techniques typically use differential equations in terms of Vij themselves,
 e.g., dVij/dt = ..., while the Hopfield-Tank uses uij as an intermediate stepping
 stone to solve Vij. Biological systems use such "indirect control".

• The energy function can be derived based on the fundamental principle for the
relationship between the equation of motion and the energy:

ij

ij

du E
dt V

∂
= −

∂
 i.e.,

ij
ij

du
E dV

dt
= −∫

 In many applications, it may be easier to write the equation of motion first from the
given problem. Derive or conjecture the energy function in such a way that when it
is differentiated, the result gives the equation of motion. If this is successful, it will
be easier than directly integrating the equation of motion to obtain the energy
function, since differentiation is typically easier than integration.
 For example, in the above n-queen problem, differentiation of the first term of
energy function leads to the corresponding first term of equation of motion as
follows.

3.5 The Hopfield- Tank Model for Optimization Problems: Applications

55

2

1 1

1
1

2

n n

ik
ij i k

V
V = =

∂
−

∂

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ →

1

1
n

ik

k

V
=

− −⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

For example, for n = 2

2

1 1

1
1

2

n n

ik

i k

V
= =

−
⎡ ⎤⎛ ⎞
⎢ ⎜ ⎥

⎝ ⎠⎣ ⎦
∑ ∑ ⎟ =

1
2

{(V11 + V12 - 1)2 + (V21 + V22 - 1)2}.

Then, for example,

(){ }2
21

21 22
21 211 1

1 1
1 0 2 1

2 2

n n

ik

i k

V
V V V

V V= =

∂ ∂
− − = − + + −
∂ ∂

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑ ⋅

 = ()
2

21 22 2

1

1 1k

k

V V V
=

− + − = − −⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

3.5.3 Traveling Salesman Problem (TSP)

The traveling salesman problem (TSP) is an NP-complete problem, notorious for its
time complexity. For this reason, the TSP has been chosen as a popular bench mark
problem to test the effectiveness of many new techniques. Basically, earlier
techniques are based on exhaustive search, which means "try all" to find an optimal
solution. Although other popular techniques such as dynamic programming and
branch-and-bound algorithms are better than pure exhaustive search, their principles
are improvements over exhaustive search by cutting fruitless branches in the search
space.
 The Hopfield-Tank model is based on a totally new idea, very easy to implement
on a parallel computer, and appears to find solutions very fast. This is why there was
so much excitement when this model was announced and demonstrated to solve the
TSP. The solutions are not guaranteed to be optimal, but they are said to be good
enough for practical applications [Hopfield and Tank, 1985].
 The basic idea of applying the Hopfield-Tank to the TSP is the same as we have
seen in this section, such as the n-queen problem. We have to define Vij appropriately
so that it represents our solution. We also have to define an equation of motion so that
it drives our solution in a desired direction. In the following, we will discuss the basic
idea using a simple example.

Formulation of the Hopfield-Tank model for the TSP

Problem Given an undirected weighted graph, find a shortest tour by visiting every
vertex exactly once.

3 Neural Networks: Other Models

56

 We will illustrate the idea by using a specific example of n = 4 cities (Fig. 3.8). Of
course, the method can be applied to any problem with any value of n.

Fig. 3.8 A TSP example of n = 4 cities.

 Define the "distance" matrix, [dij], to represent the distance between each pair of
the cities. The matrix is always symmetric, so the upper triangular matrix is sufficient.
When two cities are not directly connected, an arbitrarily large distance can be
assigned so that any solution connecting unconnected cities will disappear soon
because of the penalty. For our specific example, the distance matrix will be given as
follows:

Distance matrix

 City 1 2 3 4
 City

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 0 25 17 15

 2 0 20 10

 3 0 30

 4 0

 One optimal solution is given as:

17 15 10 20 Total
3 ⎯⎯⎯ 1 ⎯⎯⎯ 4 ⎯⎯⎯ 2 ⎯⎯⎯ (3) 62

We note that there is always another corresponding optimal solution for each optimal
solution by traversing the route in the opposite direction (in the above, 3 — 2 — 4
— 1 — (3)).
 Our problem is to determine an order of cities to be visited that gives the minimum
traveling distance. To represent a solution (not necessarily optimal) which shows the
order of cities to be visited, we consider an n × n "solution" matrix. For our example,

3.5 The Hopfield- Tank Model for Optimization Problems: Applications

57

if a solution is to visit Cities No. 3, 1, 4, 2 (and 3) in this order, then the 4 × 4 matrix
will be:

A solution matrix

 Position 1 2 3 4
 City

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 0 1 0 0

 2 0 0 0 1

 3 1 0 0 0

 4 0 0 1 0

Here entry 1 means visit; 0 means not visit. More precisely, an entry 1 in the i-th row,
j-th column means City i is the j-th city to be visited. For example, City 3 will be
visited first, City 1 will be visited second, and so on. Note that there is exactly one 1
in each row and column. We define VXi, 0 ≤ VXi ≤ 1, to represents the degree of
visiting City X at Position i (i.e., as i-th city). If VXi = 0 then not visit City X as the i-th
city; if VXi = 1 then visit; if VXi is between 0 and 1, say 0.3, then visit with degree 0.3
(although in real life, you cannot do this). For example, during iteration processes,
our solution matrix can look as follows:

 Position i 1 2 3 4
 City X

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 0.1 0.8 0 0.1

 2 0.2 0 0.2 0.8

 3 0.7 0.1 0 0.2

 4 0.3 0.4 0.9 0.2

The basic equations can be defined as:

Xi Xi
Xj Yi Yj

j i Y X Y j

du u
A V B V C V n

dt τ ≠ ≠

= − − − − −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑

(), 1 , 1XY Y i Y i

Y

D d V V+ −− +∑ .

3 Neural Networks: Other Models

58

{ }
0

1
() 1 tanh

2
iX

Xi Xi
u

V g u
u

= = + .

1 1
2 2

Xi Xj Xi Yi

X i j i i X X y

E A V V B V
≠ ≠

= +∑∑∑ ∑∑∑ V

+ (), 1 , 1
1 1

2
2 2

XY Y i Y i

X i X Y X i

Xi XiC V n D d V V V+ −

≠

− + +⎛ ⎞
⎜ ⎟
⎝ ⎠
∑∑ ∑∑∑

The coefficients A, B, C, and D, and u0 are constants (for example A = B = D = 500,
and C = 200). We have five terms on the right-hand side of the first equation of
motion. The first term is called biological term. The value of τ can be set to 1 without
loss of generality (see [Hopfield and Tank 1985]. The second term drives to have
only one 1 in Row X (if other elements are 0, then keep the current value of uXi;
otherwise, reduce uXi so that VXi becomes 0). The third term is the same as the second
except that it is for Column i. The fourth term is for having exactly n 1's in the entire
solution matrix.
 The last term is to minimize the total distance to be traveled by the solution. If VXi
and VY, i+1 are close to 1, the degree of visiting these two cities in sequence (ith visit
for X and (i+1)st for Y) is high. If dXY, the connecting distance between cities X and
Y, is also large, it is better to get rid of VXi by reducing uXi. Similarly, VY, i-1 is for
(i-1)st visit for Y and ith visit for X. In our example, suppose that X = 1 and i = 2; then

() () () ()1 3 1 12 23 21 13 33 31 14 43 4Y Y Y

Y

d V V d V V d V V d V V+ = + + + + +∑ 1 .

For example, if VXi = V12 and VY, i+1 = V23, and if both are close to 1, then the degree
of visiting these two cities in sequence is high: X = 1 for the 2nd city and Y = 2 for the
3rd city. Since dXY = d12 = 25 is large, we would try to remove VXi = V12.

3.6 The Kohonen Model

The Kohonen neural network model possesses interesting characteristics such as
self-organization and competitive learning. The major objective in this section is to
study these characteristics in the Kohonen network.

Background

One interesting aspect in the study of neural networks is how a neural network learns.
The backpropagation model, discussed in the previous chapter, performs supervised
learning. For each input pattern, the neural network computes its output. At the same
time, the neural network is given correct output by the teacher, compares it with its
own output, and tries to learn how to make its output closer to the correct output. This

3.6 The Kohonen Model

59

supervised learning process is like a private lesson with a tutor. Each time the student
comes up with an output (for example, pronouncing a word or carrying out an
arithmetic computation), the tutor immediately gives the correct answer.
 A variation of this supervised learning is called graded or reinforcement
learning. In this method, the neural network is not given correct output
corresponding to each input. Instead, the neural network is occasionally given a
"grade" or "score" for overall performance for its outputs since the last time it was
graded. Graded learning is analogous to a classroom situation, where students are
occasionally given quizzes and exams, and the resulting scores reflect their overall
performance.
 When we think of the way humans learn, the above-mentioned supervised and
graded learning are certainly important. But human learning is not limited only to
these forms and involves much more. For example, a baby gains a tremendous
amount of knowledge early on, such as how Mom, Dad and other objects around the
baby look, sound, smell and feel. Obviously the baby does not learn this by being told
what is correct and what is not. In other words, humans have the ability to learn
without being supervised or graded. It will be interesting to model such human
learning in neural networks, as, for example, in the form of unsupervised learning
(that is, neither supervised nor graded). The term unsupervised learning refers to a
method in which the neural network can learn by itself without external information
during its learning process.
 Self-organization is an unsupervised learning method, where the neural network
organizes itself to form useful information. This method may model some of the
human learning processes discussed above, which are neither supervised nor graded.

 In competitive learning, neurons (or connecting edges) compete with each other.
 The winners of the competition strengthen their weights while the losers' weights are
unchanged or weakened. The idea is somewhat similar to the principle of evolution,
which will be discussed in the next chapter on genetic algorithms; the winning
species in the evolution process survives while the losers become extinct. By
employing competitive learning, the neural network can self-organize, achieving
unsupervised learning. These terms "self-organization" and "competitive" learning
will become clearer when we study the Kohonen network in the following.

Architecture

The architecture of the Kohonen network is shown in Fig. 3.9. It is a multilayered
network of two layers; the first is the input layer and second is the output layer, called
the Kohonen layer. The neurons in the Kohonen layer are called Kohonen neurons.
Every input layer neuron is connected to every Kohonen neuron, with a variable
associated weight. The network is non-recurrent, that is, feedforward (input
information propagates only from the left to right). Continuous (rather than binary or
bipolar) input values representing patterns are presented sequentially in time through
the input layer, without specifying the desired output. Each pattern is represented in
the form of a vector, x = (x1, x2, ..., xn).

3 Neural Networks: Other Models

60

Fig. 3.9. The Kohonen network architecture.

 In the above figure, the neurons in the Kohonen layer are arranged in one
dimension. They can also be arranged two-dimensionally. In both one and two-
dimensional Kohonen layer configurations, a "neighborhood parameter" or "radius,"
r can be defined to indicate the neighborhood of a specific neuron. Fig. 3.10
illustrates examples of defining radiuses for one and two-dimensional Kohonen layer
configurations. Neighbors do not wrap around cyclically from one end to the other,
i.e., missing end neurons, if any, are not considered. For two-dimensional
configurations, other shapes such as hexagons can also be defined. There are
variations for the Kohonen network other than the model described here in the
architecture and computational procedure.

Computational procedures

Initialization (Step 0).

Assign small real random values to weights, wij for i = 1 to n and j = 1 to m.
Initialize the following two parameters:

A neighborhood parameter, radius r (e.g., r = 3). (See Fig. 3.10.)
A learning rate, α, where 0 ≤ α ≤ 1 (e.g., α = 0.8).

Iterations

Repeat the following Steps 1 through 5 for a sequence of input vectors, x's, drawn at
random.

Step 1. Enter a new input vector, x = (x1, x2, ..., xn), to the input layer.

3.6 The Kohonen Model

61

(a)

(b)

Fig. 3.10.Neighborhood examples of neuron in Kohonen layers represented in terms of
radiuses. (a) A one-dimensional configuration. (b) A two-dimensional configuration.

The following Steps 2 and 3 perform competitive learning.

 Step 2. Selection of a winning Kohonen neuron.

The Kohonen neurons compete on the basis of which of them have their
associated weight vectors, wj = (w1j, w2j, ..., wnj), "closest" to x, as
measured by a "distance function," D(wj, x). Each Kohonen neuron, j
for j = 1 to m, calculates its distance as D(wj, x). There are different
choices for the function form of D(wj, x). A common form is:

D(wj, x) = . ()
1

2
n

ij i

i

w x
=

−∑

The winning Kohonen neuron is the one with the smallest distance.

3 Neural Networks: Other Models

62

 Step 3. Weight modification.

For all neurons, j, within a specified neighborhood radius of the
winning neuron, adjust the weights according to the following formula:

 wj

(t+1) = wj
(t) + α(x(t) - wj

(t))

This weight modification moves the weights associated with the
winning neurons a fraction of α of the way from wj to x. For example,
in extreme cases, if α = 1 then wj

(t+1) will change to x(t); if α = 0 then
wj

(t+1) will remain as wj
(t). For a typical value of α, which is between 0

and 1, wj
(t+1) will be between x(t) and wj

(t).
For all the remaining (losing) neurons, the weights are unchanged, i.e.,
wj

(t+1) = wj
(t).

 Step 4. Update learning rate α. Typically, α is gradually reduced over

iterations.

 Step 5. Slowly reduce radius r at specified iterations.

Example.

We consider a simple scenario of a one-dimensional Kohonen neural network with
three input layer neurons x1, x2, x3 and 10 Kohonen layer neurons y1, y2, ..., y10. We
interpret each input vector x = (x1, x2, x3) as representing a color: (1, 0, 0) = red, (0,
1, 0) = yellow, (0, 0, 1) = blue, (1, 1, 0) = orange, etc. We may have a sequence of,
say, 20 input vectors.

 Input vector No.17 may randomly be picked up first, representing red, x = (x1, x2,
x3) = (1, 0, 0). We will determine the winning Kohonen neuron, i.e., yj that “best
represents” this x. To do so, we compute 10 associated distances corresponding to the
10 Kohonen neurons and find yj that gives the minimum distance. Perhaps y6 is the
winner; the associated weight vector (w16 , w26 , w36) = (0.9, 0.1, 0.2) is closest to this
input vector, x = (x1, x2, x3) = (1, 0, 0), and its associated distance is:

Distance = (w
3

1i=
∑ i6 - xi)2 = (0.9 - 1)2 + (0.1 - 0)2 + (0.2 - 0) 2 = 0.06.

Next, we adjust the weights for neighboring ys; e.g., y5, y6, y7 if r = 1. The new
weights will be between the current weights and x. Assuming α is 0.8, the new
weights associated with y6 will be:

 w16

(new) = w16 + α(x1 - w16) = 0.9 + 0.8 * (1 - 0.9) = 0.9 + 0.08 = 0.98.
 w26

(new) = w26 + α(x2 - w26) = 0.1 + 0.8 * (0 - 0.1) = 0.1 - 0.08 = 0.02.
 w36

(new) =

We notice, for example, that the new weight w16 = 0.98 is between the current weight
w16 = 0.9 and x1 = 1. The new weights associated with y5 and y7 will also be computed
similarly.

3.7 Simulated Annealing

63

 The second input vector may be No. 12 and represent blue, x = (0, 0, 1). Perhaps
y3 is the winner. The third input vector may represent red, x = (1, 0, 0). …… After 20
input vectors (an epoch), reduce α from 0.8 to e.g., 0.8 * 0.9 = 0.72. After more
epochs, the weight vectors converge, i.e., the neural network self-learns by clustering
the three colors. If input is red, y6 fires; if input is blue, y3 fires; and so on.

What does the Kohonen network accomplish?

The network stores the presented input vector patterns through modification of
weight vectors. After enough input vectors are presented, the weight vectors become
densest where input patterns are most common, and become least dense where input
patterns are rare. That is, the effect is to cluster (or categorize) the input patterns. The
density distribution of the weight vectors tends to approximate the density
distribution of the input vectors. In addition, similar input patterns will be classified
in the same cluster and will fire the same output neurons. The input patterns are
stored and classes are found by the network itself without a teacher or ideal output
patterns; this is the idea of self-organization and unsupervised learning.

Application examples

A neural phonetic typewriter

Kohonen [1988] shows a speaker-adaptive speech recognizer using a Kohonen
neural network. Spoken words are presented to the neural network through a
microphone with some pre-processing. The output neurons are labeled with
phonemes. Basically, the network trains itself to map the input to output.

Data compression as a vector quantizer

A Kohonen network can be used to compress and quantize data, such as for speech
and images, before storage or transmission to reduce the amount of information to be
stored or sent. The principle is to categorize a given set of input patterns into classes,
and represent any pattern by the class into which it fits. Generally, a neural network
learning process of this type, to divide a set of input patterns into disjoint classes, is
called learning vector quantization.

3.7 Simulated Annealing

Simulated annealing is a general technique for optimization problems in many
application domains. Our interest in this chapter is its application to neural networks,
particularly to Hopfield networks, but simulated annealing can be employed in many
other areas. Loosely speaking, Boltzmann machines, which will be discussed in the
next section, are extensions of Hopfield networks in which the simulated annealing
technique is incorporated to achieve optimization.

What is simulated annealing and why do we use it?

 3 Neural Networks: Other Models

64

When we solve a hard optimization problem by an iterative process, the solution may
prematurely stuck in an undesirable local minimum before reaching the global
minimum (or an acceptable local minimum), as illustrated in Fig. 2.10. Simulated
annealing is a technique to avoid undesirable local minima. In general, many iterative
optimization techniques may determine a solution that minimizes or maximizes a
certain objective function of a system, such as total error, energy, cost, or profit.
Minimization and maximization are technically identical, i.e., exactly the same
technique can be used – to minimize we go down and to maximize we go up.
 The basic idea of employing iterative techniques is as follows. If we can find a
solution that minimizes the objective function in one step, that would be the best. In
order to find an x that minimizes the function f(x) in calculus, we set the derivative
f'(x) = 0. This is a one-step procedure. For many difficult problems, however, this
one-step approach does not work; in such cases, we employ an iterative procedure,
such as that discussed earlier for the backpropagation model and Hopfield networks.
Typically, we start with an arbitrary, often randomly selected, solution and improve
the solution incrementally through many iterations. In each step f(x) decreases
slightly, and hopefully f(x) reaches the absolute bottom. A common problem of this
technique is that the solution may prematurely terminate upon reaching a local basin
that is located at a high elevation, and we may mistakenly conclude that this is the
best solution.
 Simulated annealing tries to overcome this local minima problem by incorporating
probabilistic, rather than strictly deterministic, approaches in search of optimal
solutions. The term “probabilistic” is also called “statistical” or “stochastic,” all of
which describe the same concept in this context. The name "simulated annealing" is
used since it is analogous to a gradual cooling or annealing process of a metal or
another substance to its lowest energy level, resulting in a crystal. If the metal is
heated to a high temperature, it melts. If the metal is cooled quickly (quenching),
atoms or molecules bind together without reaching the lowest binding energy levels,
leading to an amorphous or defective state. This is analogous to an iterative process
that is trapped in an undesirable local minimum. We want to produce a crystal state,
a global minimum, by annealing. Therefore, we will set the system temperature high
at the beginning, gradually reducing the temperature, making certain that the system
is near thermal equilibrium at each temperature.
 The algorithm discussed here is analogous to physical phenomena, especially
statistical mechanics. Energy E is a measure that is used to determine whether a
minimum (or maximum) solution has been reached. E can represent total error, cost,
profit, etc., depending on the specific application. Typically, E does not represent
physical energy. Similarly, temperature T is another measure often called
pseudo-temperature, a parameter to perform simulated annealing computer
algorithms. That is, T is analogous to temperature in thermodynamics, but typically
it is not physical.

Probabilities of states in terms of the energy and the temperature

We briefly overview the statistical mechanics aspect from which simulated annealing
is conceived. In thermodynamics, the probability of finding the system in a particular
state with energy E and temperature T is proportional to the Boltzmann probability
factor:

3.7 Simulated Annealing

65

E

KTe
−

where k is the Boltzmann constant, 1.3896 × 10-23 joule/kelvin, and T is a
measurement in kelvin = ºC + 273.15. Consider two states S1 and S2, with energy E1
and E2, and the same temperature T. The ratio of the probabilities of the two states is
as follows:

() () []
1

1 2
1 2

2
exp exp

exp

E
E EkTP S P S

E kT
kT

−
−

= =
−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

.

For example, a molecule of gas in the earth's atmosphere has its lowest energy at the
sea level of 0 meters and higher energy at a higher altitude. But the probability of
finding the molecule 10 meters above sea level is about the same as at the sea level,
because the energy difference [E1 - E2] is very small in comparison with kT, i.e., the
probability ratio of these two levels is exp(-[E1 - E2]/kT) ≈ exp(- 0/kT) ≈ 1. But when
the altitude becomes much higher, say, 10,000 meters, the probability difference is
significant. At such a high altitude, significantly fewer molecules exist. The
probability of a molecule, or, equivalently, the number of molecules, decreases
exponentially with the altitude.
 Now, as a hypothetical scenario, assume that the temperature is increased 1,000
times. That is, T in exp(-[E1 - E2]/kT) is 1,000 times larger. Under such circumstance,
the probability of finding the molecule would be much higher, even at a high altitude.
The probability at 10,000 meters is the same as at 10 meters at the original
temperature. Accordingly, when temperature is high, the system explores a large
number of possible states, ranging at low to high altitudes.
 Simulated annealing adopts this thermodynamics concept. We do not need to keep
the Boltzmann constant, k, or to measure E in joules and temperature in kelvin, since
we are not dealing with physical systems. We can drop k by selecting an appropriate
ratio between E and T. We start with a high temperature so that a large number of
possible solutions can be explored at an early stage. We lower the temperature
gradually, as during metal annealing, ensuring a low-energy solution at each
temperature.

Simulated annealing algorithm
__

Algorithm

 Step 0. Initialization.
Randomly select a solution vector x. Set the temperature parameter T to
T0. We may select T0 large enough in comparison with a representative
| ΔE | so that e-ΔE/T is sufficiently close to 1. ΔE is defined in the next
Step.

 3 Neural Networks: Other Models

66

 Step 1. Beginning of the outer and inner loops.

Compute xp, a perturbed (slightly changed) solution of x.
Determine ΔE = E(xp) – E(x), the change in the energy (objective)
function.

 Step 2. Select the current x (i.e., no change) or xp (i.e., the perturbed new

solution) based on the following criteria for a new x of the next time
step.
Case 1. ΔE < 0, i.e., xp is better than x. Select xp.
Case 2. ΔE ≥ 0, i.e., xp is not better than x. Select xp with the
probability of e-ΔE/T, and x with the probability of 1 - e-ΔE/T. We can
implement Case 2 by picking up a random number r on [0, 1], then
selecting xp if r < e-ΔE/T, and selecting x otherwise.

 Step 3. Repeat Steps 1 and 2 until | ΔE | becomes small enough, i.e., the system

is near equilibrium at this temperature. (Alternatively, repeat until the
number of iterations exceeds a predetermined maximum number).

 Step 4. Reduce the temperature T and repeat Steps 1 through 3 until T reaches

zero or a small positive number. Possible schemes for reducing the
temperature will be discussed later.

__

In the above algorithm, Step 2, Case 2 is a key to simulated annealing. This action
forces the relative probabilities of the two states of xp and x, that differ in energy by
(E, to match the Boltzmann distribution [Kirkpatrick, 1988]. The idea of the process
is that even if (E (0, i.e., the new solution is the same or worse than the current one,
we still select the new solution with a certain probability. This helps to escape from
local minima by not focusing solely on downward movement. The probability of this
selection is high when temperature T is large, since e-ΔE/T ≈ e-ΔE/∞ ≈ e0 ≈ 1. The
probability becomes smaller when T gradually decreases, and for T → 0, the
probability e-ΔE/T = 1/eΔE/T ≈ 1/e∞ → 0. (When both T and | ΔE | are exactly zero, e-ΔE/T
is undefined. We can avoid this extreme case by stopping the algorithm when (E and
T are sufficiently small.) The effect of this probability change is that, starting at a
high temperature, we try to jump out of local minima more aggressively during an
early stage. Later, presumably most, if not all, local minima have been escaped, and
when the system is close to a global minimum, we perform a more gentle minimizing
process.

Example. Traveling salesman problem (TSP)

N = 5 cities are randomly scattered within a 1.0 (1.0 square area, and numbered 1
through 5 (Fig. 3.11.) Each solution vector x is a permutation of N numbers. E(x) is
the total distance for solution x.

3.7 Simulated Annealing

67

Figure 3.11. A randomly selected solution example of a traveling salesman problem of five
cities. The solution vector x = (1, 3, 2, 5, 4).

Application of the algorithm

 Step 0 Randomly select a solution vector x, such as (1, 3, 2, 5, 4), for the 0th
iteration. Set T to T0.

 Step 1. Compute xp, a perturbed solution of x. For example, xp may be obtained
by randomly swapping two cities in x. Perhaps it is (1, 3, 4, 5, 2) for the
first iteration. Determine ΔE = E (xp) – E(x), the change in the total
distance.

 Step 2. Case 1. If ΔE<0, i.e., xp is a better solution than x, select xp as a new x
for the next step.

 Case 2. IF ΔE ≥ 0, select xp with e- ΔE/T probability, keep current x with
1-e- ΔE/T probability.

 Step 3. Repeat Steps 1 and 2 until |ΔE| is small enough.
 Step 4. Reduce T by, for example. (new T) = 0.9 × (current T). Repeat Steps 1

though 3. Terminate the entire algorithm when T reaches zero or a small
number.

 My graduate student Bob Crichton performed numerical experiments on TSP, by
selecting various values of parameters such as the number of cities (5, 10, 15, 20),
initial temperature T0 (e.g., 0.02, 0.05), |ΔE| min in Step 3 (e.g., 0.1, 0.21, 0.42), and
the coefficient of the temperature reduction formula in Step 4 (e.g., 0.9, 0.95, 0.99).
He also experimented with a slightly different way of obtaining a perturbed solution
in Step 1 – randomly picking two cities then reversing the order of the cities between
them including the two cities. For example, if Cities 3 and 5 are picked in 6-city
solution (1, 3, 4, 6, 5, 2), then the perturbed solution will be (1, 5, 6, 4, 3, 2). This
approach often yields more moderate changes in the total distance than the one
described in Step 1. This is because the former involves changing two distances (in
the above example, the distances between 1 and 3, and 5 and 2), where as Step 1
involves changing four distances.
 Fig. 3.12 shows a typical run to obtain an optimal solution for 10 cities with T0 =
0.021, |ΔE| min = .021, and (new T) = 0.9 × (current T), employing Step 1 algorithm
for a perturbed solution. This run required a few seconds of runtime on a 2 Ghz PC.

 3 Neural Networks: Other Models

68

It is interesting to observe the energy changes in Fig. 3.12 (a) where local minima
were escaped due to the simulated annealing effect. When we select too small a
coefficient value in Step 4 (e.g., 0.8), temperature decreases rapidly, and
consequently the simulated annealing effect declines quickly and we may not be able
to reach an optimal solution.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 (a) (b)

0

1

2

3

4

5

1 122 243 364 485 606 727 848 969 10901211133214531574

Iterations

En
er

gy

0

0.01

0.02

0.03

Te
m

pe
ra

tu
re

Energy
Temperature

 (c)

Fig. 3.12. Simulated annealing experiment on TSP with 10 cities. (a) Initial solution.
(b) Optimal solution. (c) Total energy (distance) and temperature changes over iterations.

Considerations on reducing the temperature

In Step 4 of the algorithm, we reduce the temperature T, that is, we perform annealing
(cooling). Various schemes have been proposed for this process. There is a tradeoff
between the cooling speed and finding the optimal solution. That is, if the cooling
speed is very slow, the global minimum may be guaranteed, but it may require much,

3.8 Boltzmann Machines

69

often impractically long, computation time. The following is such a very slow
cooling scheme [Geman and Geman, 1984]:

Tt = T0/log (1 + t) t =1, 2, …

where t represents the tth iterate of the outer loop.
On the other hand, if the cooling speed is faster, the computation time will be shorter,
but finding the global minimum may not be guaranteed. Even so, often near-optimal
solutions are practically good enough. The following is such a scheme used in Step
4 of Example (TSP) above [Kirkpatrick, 1988]:

Tt = αTt-1

where the reducing factor α, 0< α<1, is typically 0.8≤ α ≤0.99.

3.8 Boltzmann Machines

3.8.1 An Overview

A Boltzmann machine can be defined as an extension of the Hopfield network. One
major distinction between these two models is the ways the states of the neurons are
updated. In the Hopfield network, the neurons are updated according to a
deterministic formula (xi(t + 1) = 1 if neti(t) > θi, …, given in Section 3.3). Note that
the term deterministic refers to the equations to change the states of neurons, rather
than how the neurons are selected for the update. Similarly, ui for the Hopfield-Tank
model is evaluated in a deterministic manner. In the Boltzmann machine, the states
of the neurons are updated in a stochastic way using simulated annealing. The
probabilities in simulated annealing are given by the Boltzmann distribution in
statistical mechanics; hence the name Boltzmann machine. Additional major
distinctions between the Boltzmann machine and the Hopfield network are: the types
of learning and the existence of hidden neurons [Ackley, et al, 1985].
 Summarizing the three major differences between the Boltzmann machines and
the Hopfield network are (more explanations below):

1. Neuron update. The Boltzmann machines - stochastic using simulated annealing,
while the Hopfield network - deterministic.

2. Learning forms. The Boltzmann machines can be either supervised or
unsupervised. The Hopfield has only one learning form.

3. Hidden neurons. The Boltzmann machines have hidden neurons, but the Hopfield
network does not.

The Boltzmann machines can be classified into two types based on the ways the
networks learn – supervised and unsupervised (sometimes called self-supervised).
The supervised version is similar to the backpropagation model, but requires much
more computation time. For this reason the Boltzmann machine for supervised

 3 Neural Networks: Other Models

70

learning is not extensively employed in practice and the details will not be discussed
in this book.

Another aspect of Boltzmann machines is how the neurons are grouped. In the
unsupervised model, the neurons are divided into two groups – visible and
hidden. In the supervised model, the neurons are also divided into two groups,
visible and hidden; furthermore, the visible neurons are subdivided into two
subgroups – visible input and visible output. In addition to the above two aspects,
namely the ways the networks learn and how the neurons are grouped, there are other
features that characterize Boltzmann machine models. They include: how neurons
are connected among and within the groups – fully or partial; and whether each
connection is bidirectional (i.e., recurrent) or unidirectional.

The subject of the Boltzmann machines is more complicated than other neural
network models we have seen. There are two major reasons for this situation. First,
as discussed above there are many choices for the network characteristics (e.g., the
network architecture and the ways the networks learn) leading to many Boltzmann
machine models. Different models are useful for various applications. Second, the
learning process of a Boltzmann machine requires more steps that involve various
aspects of computation. In the following we will discuss only the most widely used
models, in particular the unsupervised model.
The common computational characteristics of Boltzmann machines and the Hopfield
network are as follows.

1. the weights are symmetric, i.e.,wij = wji;
2. no self-feedback, i.e., wii = 0;
3. the state of each neuron is binary (0 or 1) or bipolar (-1 or 1), representing ON or

OFF, respectively;
4. the neurons are picked out randomly one at a time for update.

General problem description

Briefly stated, we are given a set of input patterns (vectors), collectively called the
environment (hereafter, we use the terms “patterns” and “vectors” interchangeably).
These input patterns are clamped (i.e., placed in effect forcefully) one at a time to the
visible neurons in the case of the unsupervised learning model and visible input
neurons in the supervised model. The objective is to match the probability
distribution of the environment (i.e., input patterns) and the probability distribution
of the network. We achieve this task by utilizing the hidden neurons and by training
the network through adjustment of weights. When it is done, the probability
distributions of the environment and the network will be the same. In effect, the input
patterns will be clustered in the network according to a Boltzmann distribution.
 In the following we discuss the architecture, problem description, learning process
basics, and learning algorithm.

3.8.2 Unsupervised Learning by the Boltzmann Machine: The Basics
Architecture

Fig. 3.13 depicts a typical Boltzmann machine for unsupervised learning. The

3.8 Boltzmann Machines

71

neurons are classified into two groups – visible and hidden. Each neuron assumes
one of two values, +1 or -1. The neurons are fully connected, i.e., every neuron is
connected to every neuron in both groups. Every connection is bidirectional, i.e., the
network is recurrent. The visible neurons are clamped to external states when the
network interacts externally with its environment. The hidden neurons operate
internally to make the network learn the underlying constraints imposed by the
external inputs.

Figure 3.13. A Boltzmann machine architecture example of unsupervised learning.

There are K visible neurons at the bottom layer, whose state can be represented by
(x1, …, xK), and L hidden neurons at the top layer, whose state can be represented by
(xK+1, …, xK+L). Each xi assumes +1 or -1. The neurons are fully connected and each
edge is bidirectional (recurrent).

Let the number of the visible neurons be K and the hidden neurons be L. Then there
are a total of K+L neurons in the network (in Fig. 3.13, K = 4, L = 3, and K+L=7). The
state of these neurons can be represented by the state vector x = (x1, …, xK; xK+1, ...,
xK+L). We can divide x into two groups, visible and hidden, as xα = (x1, …, xK) and xβ
= (xK+1, …, xK+L), respectively. To explicitly indicate vector x contains both visible
and hidden neurons, we also write x as xαβ. A vector x represents a snapshot for a
state of the network. For example, in Fig. 3.13, perhaps x = (1, -1, -1, 1; 1, -1, 1).

Problem description

In words, the basic idea of the problem is as follows. The problem involves two
major components: a Boltzmann machine neural network and its environment (Fig.
3.14). The network has a type of architecture as previously depicted in Fig. 3.13, i.e.,
it consists of a set of visible neurons and a set of hidden neurons. The environment is
a set of input patterns. Only the visible neurons are directly affected by the
environment. The hidden neurons are affected by the environment only indirectly
through the visible neurons.

 3 Neural Networks: Other Models

72

 Network Environment

Visible neurons

A set of input patterns

Hidden neurons

Fig. 3.14. The problem domain consists of a network and its environment.

The objective of the problem, in abstract terms, is to let the network create a model
of the structure implicit in the set of input vectors by using the hidden neurons. More
specifically, the implicit structure is the probability distribution of the set of input
vectors. We want this probability distribution to be closely (or exactly) realized by
the visible neurons when the network is running free from the environment. For
example, if we have a set of three input vectors, (1, -1, -1, -1), (1, -1, -1, -1), (-1, -1,
-1, 1) in the environment, the probability distribution will be 2/3 for (1, -1, -1, -1) and
1/3 for (-1, -1, -1, 1). When the model created by the network is perfect, the visible
neurons will have exactly the same probability distribution.
 More generally, we are given a set of Q training input patterns: S = {xv1, ..., xvQ},
where these patterns are not necessarily distinct. Patterns can be repeated in
proportion to how often they are known to occur. Since each pattern has K
components (x1 through xK), the entire set S of Q training patterns consists of QK
components of 1s and -1s. Our task is to perform unsupervised learning on the
network so that the visible neurons and the input patterns are clustered in terms of
their probability distributions. Clustering means dividing the patterns into groups,
where similar patterns are placed in the same group while all the others are in
different groups. Clustering is performed by adjusting network weights wij as we will
see.

Simple example

K = 4, L = 2, i.e., the architecture is obtained by removing x7 in Fig. 3.13. A state of
the 6 neurons, where each neuron takes +1 or -1, can be represented by the state
vector x =(x1, …, x4; x5, x6). We can divide x into two groups, xα = (x1,…, x4) and xβ
= (x5, x6). We assume Q = 3 training input patterns: (1,-1,-1,-1), (1,-1,-1,-1),
(-1,-1,-1,1). The first two patterns are repeated. Set S of these input patterns is given
by S = {xv1, xv2, xv3} = {(1,-1,-1,-1), (1,-1,-1, -1), (-1,-1,-1,1)}, which consists of QK
= 3 × 4 = 12 values of 1 or -1.
 The visible neurons can be interpreted as representing colors: x1 = red, x2 = yellow,
x3 = green and x4 = blue. (1,1,-1,-1) would represent orange. The above three input
patterns represent red, red, blue. When these three input patterns are presented and
the network successfully converges, the input patterns will be clustered into two
categories: red and blue.

Clustering

3.8 Boltzmann Machines

73

One immediate question may be what such a clustering action accomplishes. The
answer is basically the same as what a Kohonen network does (section 3.6). The
network stores the input patterns through modification of weights. The weights
become densest where input patterns are most common.
 Suppose we observe spectral intensities of 100 stars and feed them to a network.
Perhaps 20 of them are classified as reddish, 30 are bluish, and 50 are whitish. The
network clusters the 100 stars into these three categories without being told by the
human how many categories are expected and what these categories are. Clustering
data can be applied in many domains. Medical records such as laboratory test results
can be analyzed. Data for patients with a certain disease will be clustered in a
different group from healthy people. Such information will help to diagnose new
patients with this disease. Clustering machines based on observed characteristics
may identify those that are about to fail. Clustering business firms based on their
records and recent activities may reveal those that are in trouble.

Learning process

For their learning rules, there are some similarities among the Boltzmann machine
and other neural network models, such as backpropagation. Initially the weights are
randomly assigned, and the networks learn by adjusting the weights. The adjustments
are performed over iterations, by slightly changing the weights each time by: wij

(new)
= wij

(current) + Δwij. In the case of the backpropagation model, Δwij is selected to
decrease the total error of the network in the steepest direction. Similarly, in the case
of the Boltzmann machine, Δwij is selected to decrease the relative entropy of the
network in the steepest direction. The relative entropy is a function of probabilities
of the network states, and it is analogous to the one in statistical mechanics. Using
these probabilities, it can be shown that the steepest direction is represented by the
mean correlations between neurons. Hence, during the course of iterations these
mean correlations between neurons are collected, Δwij is determined, and the weights
are adjusted. This is the essence of the learning process.

Network energy

Analogous to thermodynamics, we can define the energy of the Boltzmann machine
of a particular state as:

 E = -
1
2

 Σi Σj wij xi xj. (1)

In the above and the other expressions in this section, i ≠ j is assumed for double
summation in terms of i and j, since wii = 0. We note that the above expression can
also be written as - Σi Σj>i wij xi xj, by summing up for only the upper triangle for j.
Suppose that we pick out a neuron xk, and change xk to –xk (i.e., flip +1 and -1). We
want to determine ∆Ek, the change in the energy of the entire network due to such a
flip. Let E' be the energy after the flip. We can consider a two-dimensional matrix
whose elements are wij xi xj. The only elements affected by the flip are those in the kth
row and kth column, and their summations are: - (1/2) (- xk) Σj wkj xj - (1/2)(- xk) Σi
wik xi = -(- xk) Σi wik xi. In the last step we used wkj = wjk and replaced dummy index j
with i. The counterpart term in E before the flip can be obtained by simply replacing

 3 Neural Networks: Other Models

74

(- xk) with (xk), i.e., the term is -(xk) Σi wik xi. Hence,

 ∆Ek = E' - E = 2 xk Σi wik xi. (2)

(Some authors define ∆Ek = E - E' = -2 xk Σi wik xi. In a binary system where each
neuron xk assumes 0 or 1, we can determine the energy difference when xk = 1 is
changed to 0: ∆Ek = (E for xk = 0) - (E for xk = 1) = Σi wik xi.)

State probabilities of individual neurons

During the course of the learning process, neurons are selected at random and
updated according to the following probabilities. Change xi to –xi with the
probability:

 P(xi → -xi) =
1

1 exp
iE

T
+⎛ ⎛ ⎞

⎜ ⎜ ⎟
⎝ ⎝ ⎠

⎞
⎟
⎠

 = 1

1 exp 2
ij j

i

i

w x
x

T
+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

 (3)

where ∆Ei is the change in the energy of the entire network due to such a flip given in
equation (2) and T is the current temperature for simulated annealing. xi stays the
same with the probability:

 P(xi → xi) = 1 - P(xi → -xi) = 1

1 exp
iE

T
+⎛ ⎛

⎜ ⎜
⎝ ⎝

⎞⎞
⎟⎟
⎠⎠

 =
1

1 exp -2
ij j

i

j

w x
x

T
+

⎛ ⎛
⎜ ⎜
⎝ ⎝

∑ ⎞⎞
⎟⎟
⎠⎠

 (4)

We note that the right-hand sides of equations (3) and (4) add up to 1. In equation (3),
when ∆Ei = 0, the probability is equal to 0.5. When ∆Ei > 0, the probability is < 0.5;
the probability approaches 0 as ∆Ei increases (i.e.: xi does not flip). When ∆Ei < 0, the
probability is > 0.5; it approaches 1 as ∆Ei decreases (i.e.: xi flips). These make sense
in order for the network energy to decrease. The effect of temperature T is that when
it is large, | ∆Ei/T | is small, so it does not produce as much of an impact on the
probability of whether it will flip or not flip. When T gets small, | ∆Ei/T | becomes
large, and so has a greater impact on determining whether it will flip or not flip.
These features agree with the spirit of simulated annealing.
 Equations (3) and (4) are consistent with the probabilities of the state of a neuron,
either +1 or – 1, which is determined in stochastic way as follows:

 +1 with probability pi
 xi = (5)
 -1 with probability 1 – pi
where

3.8 Boltzmann Machines

75

1
2

1 exp()j
j

i

ij

p
w x

T

=
+ − ∑

 ,
1

1
2

1 exp()j
j

i

ij

p
w x

T

− =
+ ∑

. (6)

Again we note that the right-hand sides of the above expressions add up to 1. The
consistency among equations (3) through (6) can be checked as follows. Regardless
of the current xi, i.e., xi = 1 or -1, we see that the probability of having a new xi = 1 is
equal to pi by applying equation (4) with xi = 1 or (3) with xi = -1. Similarly, we see
that the probability of having a new xi = -1 is equal to 1 - pi, regardless of the current
xi. Alternatively, we can compute P(xi = 1 after update) = P(xi = 1 before update) ×
P(xi → xi) + P(xi = -1 before update) × P(xi → -xi) and P(xi = -1 after update) = P(xi
= -1 before update) × P(xi → xi) + P(xi = 1 before update) × P(xi → -xi).

Free-running (-) and clamped (+) phases

The learning process of the Boltzmann machine includes the following two major
phases:
• Free-running phase (also called negative phase, and the “-“ sign is associated
with this phase), where the network operates freely without the influence of the input
patterns.
• Clamped phase (also called positive phase, and the “+” sign is associated with
this phase), where the input patterns are clamped to network’s visible neurons.
These two phases are performed alternately as -, +, -, +, ….

We label the states of the visible neurons with α, and those of hidden neurons with
β. With K visible neurons, α runs from 1 to 2K as (1, ..., 1, 1), (1, ..., 1, -1), ..., (-1, ...,
-1, -1). Similarly, with L hidden neurons, β runs from 1 to 2L. A state of the whole
system of K + L visible and hidden neurons is specified by an α and a β as one of 2K+L
possible states; we denote this specific state as αβ, a concatenation of α and β. Note
that although the two letters α and β are used, αβ represents a single state of the whole
system. Let vector xαβ represent a particular state of the network involving all the
visible and hidden neurons. For example, in Fig. 3.13, xαβ = (1, -1, -1, 1; 1, -1, 1) can
be one of the 27 = 128 possible different states.
 We place superscript - for a free-running phase and + for a clamped phase. P(xα)-
represents the actual probability of finding the visible neurons in state α at
equilibrium in the free-running (-) phase. Hereafter we use simpler notation and write
P(xα)- as Pα

-. Pα
+ is the desired probability of finding the visible neurons in state α

at equilibrium in the clamped (+) phase. Similarly, Pαβ
- and Pαβ

+ represent the
probabilities where the entire state is in state αβ at equilibrium in a free-running and
clamped phases, respectively. Pβ | α

- is the conditional probability at equilibrium
where the hidden neurons are in state β, given the visible neurons are in state α in a
free-running phase. Pβ | α

+ is the same except that it is in a clamped phase.

Computing ∆wij based on the relative entropy

Based on information theory, we define the relative entropy G as a measure of the
difference between the distributions Pα

- and Pα
+, weighted by Pα

+, as:

 3 Neural Networks: Other Models

76

 G = ln P
P

P

α
α

αα

+

−

+∑ . (7)

G is always positive or zero, and is zero when Pα
- = Pα

+ for all α.
 We select Δwij to decrease the relative entropy G in the direction of the steepest
gradient:

 ∆wij =
ij

G
w

η
∂

−
∂

. (8)

It can be shown that the above equation leads to (see Appendix):

 ∆wij = i j i j
T

x x x x
η +< > − < >⎡⎣

− ⎤⎦ (9)

where <xixj>+ and <xixj>- are the mean correlations between neurons xi and xj in the
clamped (+) and free-running (-) phases, respectively. The mean correlations take
real values on [-1, 1], and they are determined by taking the averages of xixj (See Step
5 in the following Learning algorithm).

3.8.3 Unsupervised Learning by the Boltzmann Machine: Algorithms

In the following, we summarize two algorithms, a step-by-step procedure for
unsupervised learning for the Boltzmann machine and a procedure for testing on the
same machine (Randall C. O’Reilly, 2006, private communication). There are
variations of these algorithms, and which one is best in terms of performance and
computing time depends on the application. We also give two illustrative examples.

Learning (training) algorithm

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The algorithm consists of sextupled nested loops.

 Step 0. Initialization:

Set weights wij to random values uniformly distributed over [-u, u], where u is
typically 0.5 or 1. Set the hidden neurons randomly to 1 or -1 with equal probability.

 Step 1. Iterations over consecutive network convergences.

Repeat the rest of the algorithm until the network satisfies a convergence criterion

(e.g., equation (10) below) for a certain number (e.g., 5) of consecutive times. (See
Note below)

 Step 2. Iterations over one-time network convergence.

Repeat the rest of the algorithm until the network converges one time. There are a
few different criteria for convergence check, and the following is a common one:

 2()i i

k i
x x ε− +

− <∑∑ . (10)

3.8 Boltzmann Machines

77

The outer summation is taken over for all input patterns, and the inner summation for
all the neurons in the network, i = 1, K + L. xi

- and xi
+ are xi values during the negative

and positive phases, respectively. ε is a preset small positive number. The number of
iterations of Step 2 is typically much higher than the number of distinct input patterns
because of this convergence condition. When the network satisfies criterion (10), we
say this is a “one-time network convergence”; back-up to Step 1.

 Step 3. Iterations over input patterns.

A conclusion of the set of all input patterns is an epoch. After an epoch, go back to
the convergence check in Step 2.

For each input pattern, perform sub-steps a, b and c, each once.

a. Positive (clamped) phase. Clamp the input pattern to the visible

neurons and perform Step 4.

b. Negative (free-running) phase. Perform Step 4 without clamping the

input pattern to the visible neurons.

c. Updating weights wij's.

wij
(new) = wij

(current) + Δwij, where
Δwij = (η / Tf) (<xixj>+ - <xixj>-),

where η is a positive constant and Tf is the final temperature in Steps 4a
and 4b; <xixj> is the average of xixj collected during Step 4b; <xixj>+ is the
average for the positive phase and <xixj>- is for the negative phase. (See
Note below)

 Step 4. Simulated annealing - iterations over temperatures.

a. For each of the clamped and free-running phases invoked in Step 3, perform
simulated annealing, starting from a high temperature T0 and gradually decreasing
the temperature T. For each temperature, perform Step 5. When T reaches a small
positive number Tf, the system is in thermal equilibrium at this temperature. Go to
Step 4b.

b. For each of the clamped and free-running phases invoked in Step 3, perform
additional iterations (say, 10 times) of Step 5, using the final temperature Tf in Step
4a. During these iterations, collect statistical data of xixj. After the iterations, compute
<xixj>+ and <xixj>- necessary in Step 3c. The number of additional iterations affects
the probabilistic accuracy of the collected data; the higher the number the better the
accuracy.

 Step 5. Iterations at each temperature T given in Step 4.

 3 Neural Networks: Other Models

78

Repeat Step 6 - updating neurons xi's, until all | ∆Ei | given in Step 6 become small
enough at the temperature T. (Here “all” refers to all the neurons xi under Items 1) or
2) in Step 6, below)

 Step 6. Updating neurons, xi's.

Perform the inner-most iterations over

1) all the visible and hidden neurons for a negative phase invoked in Step 3a,
or
2) all the hidden neurons for a positive phase invoked in Step 3b.

Randomly pick out a neuron xi and change xi to –xi (i.e., flip +1 and -1) with
the probability:

 P(xi → -xi) =
1

1 exp
iE

T
+⎛ ⎛ ⎞⎞

⎟⎟
⎠⎠

⎜ ⎜
⎝ ⎝

=
1

1 exp 2
ij j

i

j

w x
x

T
+

⎛ ⎛ ⎞⎞
⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

∑

where ∆Ei is the change in the energy of the entire network due to such a flip
and T is the current temperature set in Step 4. xi stays the same with the
probability 1 - P(xi → -xi) = 1/(1 + exp (-2 xi Σj wji xj/T)).

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Note on Step 1.

The reason is that the network often “accidentally” gives a very small value or a zero
for the criterion – a false convergence indication even if it is not actually converged.
When iterations are continued further for such a case, the criterion value will return
to a larger value, indicating the network was not converged. There is no scientific
formula to determine the appropriate number of consecutive times in this Step. For
a given problem, we can experiment by selecting a relatively large number and
observing that the criterion value does not change in Step 1. The number can be
affected by several factors such as the size of the network, the number of input
patterns, and the degree of the complexity of each pattern. A rule of thumb is that the
more complex the environment (e.g., a large network), the fewer number of
consecutive convergences are required, because an accidental false convergence is
less likely. (Another convergence criterion can be changes of the network weights. If
all the weights do not change for a certain number (e.g., 5) of consecutive times, the
network is considered as converged.)

Note on Step 3c.

Alternatively, Step 3c of updating weights can be performed after each epoch, rather
than after each input pattern. Such a scheme will require significantly less computing
time when there are many patterns. However, the overall performance can be less
satisfactory for some problems. When weights are modified only after all patterns are

3.8 Boltzmann Machines

79

processed, delicate weight adjustments specific to each pattern may not be
accomplished. This modified version can be implemented by setting up a new step,
Step 3.5, between Steps 3 and 4. Steps 3a and 3b are moved to Step 3.5. New Step 3
performs iterations over patterns, invoking Step 3.5 for every pattern. After all
patterns are invoked, i.e., after an epoch, perform Step 3c once.

 After a network converges for a set of training (learning or exemplar) patterns
employing the above Learning algorithm, new test patterns can be associated to the
network. The basic idea is the same as associative memory discussed in Section 3.2.
Test patterns can be generated by various ways: 1. noisy patterns, i.e., randomly
flipping +1 and -1 for some (e.g., 25% of) pixels of one of the training patterns; 2.
completely random patterns, i.e., picking all pixels randomly; 3. obtaining patterns
from experimental data. Most of these test patterns should converge to their closest
corresponding training patterns. However, some test patterns may converge to the
wrong training patterns, or to patterns different from any of the training patterns.
Such errors can occur depending on various factors such as the probability
distribution of the training patterns, the quality of the test patterns and the problem
complexity. The following is a possible algorithm to perform such testing.

Testing algorithm for each test pattern

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 Step 0. Initialization: Keep the weights wij obtained from the training session. Set
the visible neurons to the testing pattern and assign values of the hidden neurons
randomly.

 Step 1. After the above, perform sub-step a (Negative phase) of Step 3 in the
Training Algorithm. This invokes nested iterations over Steps 4a, 5, and 6. Note that
in the Testing algorithm, sub-steps b. Positive phase and c. Updating weights are not
performed.
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Illustrative examples

My graduate students Bob Crichton and Scott Galinac performed numerical
experiments on a simple Boltzmann machine, similar to Fig. 3.13. The network has
12 visible neurons and 6 hidden neurons. Three different input patterns are prepared
as shown in Fig. 3.15. One pattern of (a), two patterns of (b) and three patterns of (c)
are given as a set of training input patterns (i.e., the probability distribution of the
input patterns is 1/6, 2/6 and 3/6, respectively). For this specific run, we set T0 = 1 and
(new T) = 0.90 × (current T) in Step 4 of the algorithm, to a minimum temperature of
0.05. A typical run required about 5 consecutive iterations of Step 1 for the network
to converge with ε = 0 in Equation (10). After a successful run for network training,
different test patterns are given to the network. Most of these test patterns converged
to the corresponding training patterns.

 3 Neural Networks: Other Models

80

(a) Blue ●●●●○○○○○○○○ (b)Yellow ○○○○●●●●○○○○ (c) Red ○○○○○○○○●●●●

Figure 3.15. Simple Boltzmann machine experiment, with 12 visible neurons and 6 hidden
neurons similar to Fig. 3.13. Three types of training input patterns (a), (b) and (c) are given to
the network with frequency of 1, 2 and 3, respectively (i.e., a total of six patterns). Here ●
represents +1, ○ represents -1.

 Bob and Scott also experimented with a larger Boltzmann machine network with
120 visible neurons and 30 hidden neurons. Three different training input patterns
are prepared as shown in Fig. 3.16. As before, one pattern of (a), two patterns of (b)
and three patterns of (c) are given as a set of training input patterns. A typical run
required a single iteration of Step 1 for the network to converge with ε = 0. For the
second example with 150 neurons, it did not require any number of consecutive
iterations, i.e., only one-time network convergence in Step 1 was sufficient. For this
specific run, we set T0 = 3 and (new T) = 0.9 × (current T) in Step 4 of the algorithm,
to a minimum temperature of 0.01; η in Step 3c was set to a small number, e.g.,
0.0001 or 0.001.

(a) (b) (c)

Figure 3.16. Three types of training input patterns for a Boltzmann machine with 120 visible
neurons and 30 hidden neurons. The input patterns (a), (b) and (c) are given to the network
with frequency of 1, 2 and 3, respectively (i.e., a total of six patterns). A black pixel represents
+1, a white pixel represents -1.

After a successful run for network training, different test patterns are given to the
network. They are: 1. noisy patterns (training patterns with 25% of the pixels
reversed) and 2. completely random patterns. Most noisy patterns are converged
correctly to their corresponding input patterns. On one test for random input patterns,
100 patterns are generated randomly and given to the network. The probability
distribution of the convergence of the random patterns is close to that of the training
input patterns, i.e., approximately 1/6, 2/6 and 3/6 for patterns (a), (b) and (c),
respectively. Exceptions to these converged probability distributions are that when
the initial temperatures are set very high (for example T0 = 100 rather than 3 in Fig.
3.16 example), the distributions tend to skew toward the training pattern(s) with the
highest probability distributions. For example, out of 100 completely random
patterns, 75 of them may converge to Pattern (c), 5 to Pattern (b), none to Pattern (a),
and the remaining to patterns different from any of the training patterns. This
indicates that a selection of reasonable parameter values such as the initial

3.8 Boltzmann Machines

81

temperature and the minimum temperature is important, which may be determined
through experiment. Fig. 3.17 illustrates a typical behavior of the network when it is
given a noisy test pattern. For this specific run, we set T0 = 3 and (new T) = 0.90 ×
(current T) in Step 4 of the algorithm, to a minimum temperature of 0.01.

Figure 3.17. A typical behavior of the network described in Fig. 3. 16 when it is given a noisy
test pattern.

3.8.4 Appendix. Derivation of Delta-Weights

(Hinton and Sejnowski, 1986, pp. 315-316)

 To determine Equation (9), ∆wij = i j i j
T

x x x x
η + −< > − < >⎡ ⎤⎣ ⎦ , we substitute G

given by equation (7) into equation (8), noting that Pα
+ is independent of wij since it

is the probability of the visible neurons in the clamped phase:

 ∆wij =
ij ij

G P P
w Pα w

α α

α
η η

+ −

−

∂ ∂
− =

∂ ∂
∑ . (11)

 According to the Boltzmann distribution from statistical mechanics, the
probability Pα

- is given by:

 Pα
- = P

β

αβ
−∑ =

exp(

exp(

)

)

E

T
E

T

αβ

λμ

β

λμ

−

−

∑

∑
 . (12)

In the rightmost expression, Eαβ is the energy of the network in state αβ, and is given
by:

 Eαβ = ij i j
i j i

w x xαβ αβ

>

−∑∑ (13)

where xi
αβ is the ith neuron in state αβ. We note that αβ has been subscripted in the

previous expressions such as Pαβ
- and Eαβ, but in xi

αβ it is superscripted since we need
to indicate two indices, one for the entire state αβ and the other for each individual
neuron i. Equation (13) is the same as equation (1), except that state αβ is explicitly
shown and the summation is taken over the upper triangle area so that there is no 1/2

 3 Neural Networks: Other Models

82

factor. The summation of the denominator of the rightmost expression in equation
(12) is carried over all the states involving both visible and hidden neurons. The
dummy index λμ is used in place of αβ to distinguish it from α and β. This
denominator is a normalization factor called the partition function; we note that with

this factor. 1.P
α

α
− =∑

 By substituting equation (13) into equation (12), Pα
- is expressed in terms of wij

and is directly differentiable with respect to wij. The derivative will be used for the
last factor of equation (11). To carry out the differentiation, we first evaluate

1 1
{exp()} exp() ([]) exp(i j i j

ij ij i j i

ij
w w

E E

T T T T
w x x x x

αβ αβ αβαβ αβ αβ αβ

>

∂ ∂
=

∂ ∂
− − − − = −∑∑)

E

T
 (14)

In the above, from the first expression to the second, we substituted equation (13)
into the second occurrence of Eαβ. From the second expression to the third, we note
that all except the wij term are zero when differentiated with respect to wij. We now

compute
a
-

ij

P
w

∂

∂
 by equation (12), by applying the calculus formula (u/v)' = u'/v -

uv'/v2, and by using the result of equation (14):

a
-

ij

P
w

∂

∂
=

exp(

exp(

1)

)

i j
E

x x
T

E

T

T
αβαβ αβ

λμ

β

λμ

−

−

∑

∑
-

2

exp(exp(

exp(

1))

)

i j
E E

x x
T T

E

T

T
αβ

λμ

λμ λμ λμ

β λμ

λμ

− −

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑

∑

 =
1

i j i jP x x P P x x
T

αβ αβ λμ λμ

β λμ

αβ α λμ
− − −⎡ ⎤

−⎢ ⎥
⎣ ⎦
∑ ∑ . (15)

Substituting equation (15) into equation (11) yields:

 ∆wij =
ij ij

G P P
w Pα w

α α

α
η η

+ −

−

∂ ∂
− =

∂ ∂
∑

 = i j i j
P
P

P x x P P x x
T

αβ αβ λμ λμ

α β λμ

α
αβ α λμ

α

η +

−

− − −⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑ ∑

 = ()(i j i j
P P x x P P x x

T P
α αβ αβ λμ λμ

αβ α λμ
αα β α λμ

η +
− + −

−

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑) . (16)

Based on probability theory we have:

 Pαβ
+ = Pβ | α

+ Pα
+ and Pαβ

- = Pβ | α
- Pα

-. (17)

Also, in equilibrium are,

 Pβ | α
- = Pβ | α

+. (18)

Further Reading

83

Since these are conditional probabilities representing the hidden neurons are in state
β given the visible neurons are in state α, they must be the same whether the visible
neurons are clamped or not. Using equations (17) and (18) we have:

+

-
ß ß

-
 = . P

P P
P
α

α α
α

+ (19)

Based on probability theory we also have:

 P
α

α
+∑ = 1. (20)

Substituting equations (19) and (20) into equation (16) we have:

 ∆wij = i j i jP x x P x x
T

αβ αβ λμ λμ
αβ λμ

αβ λμ

η + −⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ∑ . (21)

In general, multiplying any quantity Φi for each event i by its corresponding
probability Pi and summing up the products for all events gives <Φ>, the expected or
average value of Φi. The above is a special case where Φ = xixj. Multiplying xi and xj
together with their corresponding probability for each state, and summing up the
products over all possible states, gives the mean correlations between neurons xi and
xj that can be denoted as <xixj>. Using this notation, the first term in the brackets is
<xixj>+, the mean correlations in the clamped (+) phase. Similarly, the second term is
<xixj>-, the mean correlations in the free-running (-) phase. Hence,

 ∆wij = i j i j
T

x x x xη +⎡⎣< > − < >− ⎤⎦ . (22)

Further Reading

In addition to the literature cited at the end of Chapter 2, the following books and
articles discuss specific topics as described below.

The following book presents many optimization problems solved by applying the
Hopfield-Tank model.

Y. Takefuji, Neural Network Parallel Computing, Kluwer Academic, 1992.

The following three are seminal articles of the Hopfield and Hopfield-Tank models.

J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities," Proceedings of the National Academy of Sciences, Vol. 79,
1982, 2554-2558.

J.J. Hopfield, "Neurons with Graded Response Have Collective Computational
Properties like Those of Tow-state Neurons," Proceedings of the National Academy
of Sciences, Vol. 81, 1984, 3088-3092.

J.J. Hopfield and D.W. Tank, "'Neural' Computation of Decisions in Optimization
Problems," Biological Cybernetics, Vol., 52, 1985, 141-152.

 3 Neural Networks: Other Models

84

The following two discuss the Kohonen models.

T. Kohonen, "The 'Neural' Phonetic Typewriter," Computer, Vol. 21, 3, 1988, 11-22.

T. Kohonen, Self-Organization and Associative Memory, 3rd Ed., Springer-Verlag,
1989.

The following two are references for simulated annealing.

S. Kirkparick, C.D. Gelatt, Jr., and M.P. Vecchi, "Optimization by simulated
annealing," Science, vol. 220, 1983, pp. 671-680. Reprinted in J.A. Anderson and E.
Rosenfeld, Eds., Neurocomputing: Foundations of Research, MIT Press, 1988.

S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images," IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 1984, pp. 721-741.

The following three are seminal articles on Boltzmann machines.
G. E. Hinton and T. J. Sejnowski, " Optimal Perceptual Inference," Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Washington, DC, New York: IEEE, 1983, pp. 448-453.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A Learning Algorithm for
Boltzmann Machines," Cognitive Science, vol. 9, 1985, pp. 147-169. Reprinted in
J.A. Anderson and E. Rosenfeld, EDs., Neurocomputing: Foundations of Research,
MIT Press, 1988.

G. E. Hinton and T. J. Sejnowski, "Learning and Relearning in Boltzmann
Machines," in D.E. Rumelhart, J.L. McClelland and the PDP Research Group (Eds.),
Parallel Distributed Processing, Vol. 1, MIT Press, 1986, pp. 282-317.

The following two cited in Chapter 2 provide tutorials for Boltzmann machines and
other neural network models.

J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley, 1991.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice-Hall,
1999.

4 Genetic Algorithms and
Evolutionary Computing

4.1 What are Genetic Algorithms and Evolutionary
Computing?

During the four billion year history of the earth, biological life was born, perhaps
as a result of a series of rare chance chemical and physical reactions of molecules.
Over time, more and more complex forms of biological life evolved. Genetic
algorithms are computer models based on genetics and evolution in biology. The
basic elements of a genetic algorithm are: selection of solutions based on their
goodness, reproduction for crossover of genes, and mutation for random change of
genes. Through these processes, genetic algorithms find better and better solutions
to a problem just as species evolve to better adapt to their environments.
 Genetic algorithms have been extended in their ways of representing solutions
and performing basic processes. A broader definition of genetic algorithms,
sometimes called evolutionary computing, includes not only generic genetic
algorithms but also classifier systems, genetic programming where each solution is
a computer program, and some aspects of artificial life. Other related areas include
evolvable hardware, evolutionary robotics, ant colony optimization, and swarm
intelligence.

Genetics in real life

Before studying genetic algorithms, we will briefly review genetics in real life,
e.g., in human. A life of a human body starts at fertilization of an egg by a sperm.
Before conception, there are 23 chromosomes, numbered No. 1, 2, ..., 23 in an
egg, and similarly, 23 numbered chromosomes in a sperm (a total of 46). In a
diploid organism like human, two chromosomes of the same number, one from the
egg and the other from the sperm, make a pair of chromosomes for the child (e.g.,
chromosomes mother No. 1 and father No. 1 make child pair No. 1) (Fig. 4.1).

4 Genetic Algorithms and Evolutionary Computing

 86

Fig. 4.1A pair of chromosomes for a child

When we closely look at a pair of chromosomes for the child, there are thousands
or even millions of genes on each chromosome. A gene can be thought of as a tiny
point on a chromosome. One gene from the mother and the corresponding gene
from the father make a gene-pair for the child. Each pair (or a certain number of
pairs) of genes contributes to specific characteristics of the child, such as the blood
type, color of eyes, etc. Such characteristics are called phenotypes.
 As an illustration, let us see how the child's blood type is determined as one of
four possible types, O, A, B, or AB. Each gene for blood type can have a value of
either 0, 1, or 2, called alleles. Possible gene-pair combinations, called genotypes,
and their corresponding phenotypes are:

 Genotype Phenotype
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 00 O
 10 or 11 A
 20 or 22 B
 21 AB

For example, if the gene value from mother is 0 and from father is 1, the child's
genotype will be 10 and the phenotype will be blood type A. Note that the order of
gene values in real life is immaterial (e.g., 10 = 01). Alleles differ for different
kinds of genes (e.g., a specific gene may have either 0 or 1, another gene may have
0, 1, 2, or 3, and so on).
 When this child grows to an adult and produces an egg (if female) or a sperm (if
male), one chromosome from each chromosome pair is selected for the egg or
sperm. This is how certain phenotypes are inherited from a person to a child, from
the child to a grandchild, and so on. Most gene values are inherited from mother
and father to the child as they are. Occasionally, however, some gene values
change (e.g., from 0 to 1), perhaps because some unusual physical, chemical, or
biological effects (e.g., a gene is hit by a cosmic ray, etc.). Such a change of a gene
value is called mutation.
 In any species in biology, those individuals who better adapt to the

4.2 Fundamentals of Genetic Algorithms

87

environment have higher probabilities for survival, thus they have higher
probabilities for producing their offspring. Over generations, this process is
repeated, and the result is that those individuals and genes that better adapt to the
environment tend to remain while those that don't tend to disappear, i.e., become
extinct. This theory of a natural screening process is called (Darwinian) evolution.

The basic idea of genetic algorithms

The computer genetic algorithms which we will study are abstract models of
natural genetics and the evolution process discussed above. Genetic algorithms
include concepts such as chromosomes, genes, mating or crossover breeding,
mutation, and evolution. We will not, however, attempt to build computer models
as close as possible to natural genetics. Rather, we will develop useful models that
are easy to implement in computers by borrowing concepts from natural genetics.
 The major process of our genetic algorithm is as follows. At the beginning, we
randomly generate solutions or "chromosomes" for the problem. After the initial
random generation of solutions, we perform iterations. Each iteration consists of
several steps - we select good solutions and perform crossover breeding;
occasionally we may have mutations on certain solutions. Through selection of
good solutions during iterations, the computer will develop increasingly better
solutions as in the case of natural evolution. We can apply this approach to many
types of problems such as optimization and machine learning.

4.2 Fundamentals of Genetic Algorithms

Representations of solutions

A genetic algorithm starts with designing a representation of a solution for the
given problem. A solution here means any value that is a candidate for a correct
solution or a final answer; a solution may or may not be the correct solution. For
example, suppose we want to maximize function y = 5 - (x - 3)2. Then x = 1 is a
solution, x = 2.5 is another solution, and x = 3 is the correct solution that
maximizes y.
 The representation of each solution for a genetic algorithm is up to us. It
depends on what each solution looks like and what solution form will be
convenient for applying a genetic algorithm. The most common representation of a
solution is a string of characters.
 Consider a finite-length string of characters over a fixed alphabet, e.g., {0,1},
{0, 1, 2}, {0, 1, *}, {0, 1, 2, ..., 9}, or {A, B, ..., Z}, etc. We then choose the length
of each string, such as, 12, 64, or 256, depending on the alphabet used and the
amount of information we want to represent in each string. The larger the alphabet
the more information can be represented by each character; therefore, fewer
characters are necessary to encode a specific amount of information. A string is
somewhat analogous to a chromosome or a set of chromosomes. Suppose that we
represent each solution by a 12-bit string over the alphabet {0, 1}. A solution in
this case may represent a set of values of 12 variables or parameters, each bit

4 Genetic Algorithms and Evolutionary Computing

 88

representing a binary value of a parameter. Each parameter, i.e., a bit in this case, is
analogous to a gene. Or, the range of each parameter may be larger than binary 0
and 1. A solution of 12 bits may represent values of 3 parameters, each parameter
using 4 bits. In this case, each parameter can range binary 0000 to 1111, or
decimal 0 to 15; each solution or chromosome has 3 genes.
 Given an application problem, we can represent each solution as a fixed-length
string, say, 32 bits. For example, a company is making four kinds of products and
the problem is to find the number of products to make in order to maximize the
profit under certain conditions. Then specific amounts of the products, e.g., (30,
10, 25, 40) for Products 1, 2, 3 and 4, respectively, is a solution, (20, 20, 30, 35) is
another solution, and so on. We can represent a solution by a string, assigning the
first 8 bits to represent the amount for Product 1, the next 8 bits for Product No. 2,
and so on, with the total of 32 bits.
 As said before, the representation of each solution for a genetic algorithm is up
to us. Although string representation of a solution is common, other forms of
representation may be more convenient for other problems. For example, for
certain graph problems, a graph can be a solution. A graph can be represented by
an adjacency matrix for certain problems. For a weighted graph problem, each
solution may be a matrix whose elements represent the weights associated with the
edges. For genetic programming problems, each solution is a computer program,
much more structured than a character string. We should be flexible for adopting
the most appropriate form of solution representation for each problem. In this and
following sections, we will use simple string representation on the alphabet, {0, 1}.

The fitness of a solution

The fitness of a solution is a measure that can be used to compare solutions to
determine which is better. For example, a company is trying to maximize a profit.
The profit itself can be used as the fitness, or a scaled value of the profit can be the
fitness. In the following we will briefly describe the fundamental steps of a genetic
algorithm. The meaning of these steps will become clearer when we see examples
in the following sections.

Basic steps of a genetic algorithm

There are variations and extensions of the genetic algorithm procedure. The
following is a simple and typical one. A set of solutions at a specific time step is
called the population.

 Step 0. Initialization of the population.

 Generate a set of solutions randomly.

Repeat the following three steps until the correct (optimal) solution is found, or
more generally, until a terminal condition is satisfied. For certain problems, we
may not know the correct solution. In such a case, we set up terminal condition(s).
For example, we keep track of the best solution in each iteration. When it does not
improve over a certain number of iterations (e.g., 10), we terminate the iterations.

4.2 Fundamentals of Genetic Algorithms

89

 Step 1. Reproduction

(a) Determine the fitness values and their corresponding
probabilities for all the solutions in the population.

(b) Creation of a mating pool. Randomly select solutions weighted
by the fitness. Solutions with higher fitness are more likely to
be picked out than the unfit ones and tend to survive into the
next generation. Here the evolution concept based on the
principle of natural selection is employed.

 Step 2. Crossover (recombination) breeding

(a) Take two solutions randomly at a time. With a fixed crossover
probability pc (e.g., pc = 0.7), randomly determine whether
crossover takes place. If crossover does take place, go to the
next substep (b); otherwise, form two offspring that are exact
copies of the two solutions (parents), and go to Step 3.

(b) Select randomly internal points (crossing sites) of the solutions,
then swap the solution parts that follow these points.

 Before crossover Next generation solutions
 (offsprings)

 crossing site

 ↓
 Solution 1 ^ ^ ^ ∨ ∨ ∨ ∨ ^ ^ ^ _______
 Solution 2 _ _ _ _______ _ _ _ ∨ ∨ ∨ ∨

 Perform this Step 2 for all the solutions obtained in Step 1, i.e., until

the new population size reaches the initially set population size,
randomly selecting a pair at a time.

The significance of the crossover operations is as follows. Each
solution may represent a set of values for parameters, or a prescription
for performing a particular task, and so on. Parts of each solution (e.g.,
substrings of a solution string) may contain notions of importance or
relevance. A genetic algorithm exploits this information by
reproducing high quality notions, then crossing over these notions
among high performers.

 Step 3. Random mutation (or simply mutation).

With a certain fixed small mutation probability, pm (e.g., pm = 0.001),
randomly select a small portion of the solutions and artificially change
it (e.g., a bit of 1 to 0 or 0 to 1). The frequency of mutation is typically
small (e.g., one mutation per thousand bit transfers).

The idea of Step 3 is again modeled from natural mutation. In this way,

4 Genetic Algorithms and Evolutionary Computing

 90

we expect to create a new breed which would not be possible from the
ordinary reproduction and crossover breeding processes. In genetic
algorithms, after a certain number of iterations, sometimes most
solutions in the population become alike so that no further significant
changes occur, yet they are far from optimal. The parts changed by
mutation often shake the set of solutions out of such a static
configuration.

The above procedure constitutes one computer run. Often we repeat a certain
number of (e.g., 10) runs starting with different random number seeds, then find
the best solution among them. This is because a genetic algorithm does not
guarantee the optimal solution.

4.3 A Simple Illustration of Genetic Algorithms

To better understand the fundamentals of the genetic algorithm discussed in the
previous section, we will consider a scenario to which the algorithm may be
applied. Then we will apply the algorithm step by step to a fictitiously simple
example.

A sample scenario for a genetic algorithm application

We will describe a sample scenario to which the genetic algorithm may be applied.
The key point is that different looking problems in various application areas often
reduce to the same problem, thus allowing applications of the same algorithm.
Typical situations where genetic algorithms are particularly useful are in difficult
cases for which analytical methods do not work well.

Job shop scheduling

A job shop is a system composed of a series of work stations capable of making
products. "Products" can be tangible goods as well as intangible items such as
services. Our objective is to determine an optimal schedule which maximizes the
profit of the entire shop by, for example: making an appropriate amount of
products; reducing costs of production, idle time, and inventory; and avoiding
possible penalties resulting from tardiness (i.e., not meeting the completion
deadline) and low product quality. Obviously, the problem is important for a
business's competitiveness or even for its survival. The scenario applies to
situations such as the well known "just-in-time" systems. The problem is difficult,
since there are not only many complex regular factors, but also irregular ones, such
as sudden machine breakdowns, delays of supplies, etc. The schedule must be able
to adjust flexibly and quickly to these unpredictable irregular situations. Because of
these complexities, the problem cannot be expressed in an elegant mathematical
formula such as linear programming.
 There are many variations of the problem, depending on how its characteristics
are defined (e.g., how many different kinds of products are made at the job shop,

4.3 A Simple Illustration of Genetic Algorithms

91

which operations on which products are performed at each work station, the
profits, costs, and constraints for making these products at each work station, and
so on). An extension is a system of multi-job shops, where certain job shops are
interrelated. A system of a manufacturer, suppliers of raw materials and energy,
and wholesalers would be an example of an extension.
 Here we consider a simple scenario of a job shop with three work stations, 1, 2,
and 3. At each work station, only one kind of product is made. From running the
job shop, we may observe that a schedule yields a total profit of 83 by making 10,
15, 12 units of the products at Work Stations 1, 2, and 3, respectively. Another run
under the same circumstances may find a solution of 11, 17, 12 products yields the
total profit of 91, and so on. We further simplify the problem and assume that each
work station either makes a certain number of the product (this case can be
represented by a binary 1), or does not make (represented by a binary 0). A
schedule will then be represented by a three-bit string. For example, 101 means
that (make, not make, make) at Work Stations 1, 2, and 3, respectively. This
particular schedule may yield a total profit of 5. Another schedule (001) may be
observed having a profit of 1.

A simple, step by step illustration of the genetic algorithm

Representation of solutions

Assume that each solution is represented by a three-bit string, and the population
size n is 4. Assume also that the fitness value of each string is merely the binary
number represented by the string as a whole (e.g., a three-bit string 101 gives the
fitness value of decimal 5). Our problem is to find the string that gives the
maximum fitness value, i.e., string 111 for the maximum fitness value of 7. In real-
world situations, of course, the fitness values are not determined in such a simple
manner. The fitness values may be determined from complex formulas, simulation
models, or by referring to observations from experiments or real problem settings.
Our objective here is to illustrate the basic steps of the genetic algorithm, which
can be applied to real-world problems, assuming that their fitness values are
determined appropriately.

Step 0. Initialization of the population

Using random numbers, suppose that the following initial population is generated.
Observe that each solution is a three-bit string and the population size n is 4.

 101
 001
 010
 110

Iteration 1, Step 1. Reproduction - generation of a new mating pool

(a) Determine the fitness value for each solution, i.e., string, Ai, and the total
fitness, F = Σ fi.

4 Genetic Algorithms and Evolutionary Computing

 92

 i Ai fi

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 101 5
 2 001 1
 3 010 2
 4 110 6
 ⎯⎯

 F =14

Compute the fitness probability (or normalized fitness), pi = fi / F = fi / Σ fi,
and expected count = n⋅ pi.

 i Ai fi pi n⋅pi
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 1 101 5 0.357 1.429
 2 001 1 0.071 0.286
 3 010 2 0.143 0.571
 4 110 6 0.429 1.714

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Total 14 1.000 4.000
 Avg 3.5 0.250 1.000
 Max 6 0.429 1.714

(b) Randomly select a new set of n strings (mating pool) whose average

distribution is equal to the expected count distribution. In the above example,
out of a new set of 4 strings, 1.714 strings of No. 4 will be selected as an
average, 1.429 strings of No. 1 will be selected as an average, and so on. Since
the number of strings must be a whole number, the actual number of strings for
a particular reproduction will not contain a fraction. The most likely actual
number of strings generated for No. 4 would be 2, which is the closest to
1.714; the number can be 1; the number can also be either 0, 3, or 4, but the
chances for these numbers are much smaller. More precisely speaking, the
expected number of String No. 4 out of 4 strings is 1.714. Suppose that we
generated 1,000 sets of 4 strings, i.e., 4,000 strings total, then about 1,714
strings will be String No.4. When we randomly pick a set of 4 strings from this
big pool of 4,000 strings, a specific set may contain 0, 1, 2, 3, or 4 strings of
String No. 4. String No. 2 is likely to disappear from the new mating pool
since its expected count 0.286 is small.
 This process of creating a set of n strings can be implemented by assigning
the ranges of random numbers to represent the probabilities of the strings
being included. We choose the distribution of the random numbers to be
proportional to the probability distribution of the strings. (This technique is
common in the Monte Carlo method - a simulation technique using random
numbers).

4.3 A Simple Illustration of Genetic Algorithms

93

 In our example, we can pick out a three-digit random number to match the
three-digit probability to select a string. We may assign a random number to
string No. i as follows.

 Random No. Probability String No. i

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 000 - 356 0.357 1
 357 - 427 0.071 2
 428 - 570 0.143 3
 571 - 999 0.429 4

There are 1,000 three-digit random numbers 000 through 999 in the above
example. Each of these random numbers has an equal probability of 0.001 to
be picked out. There are 357 random numbers 000 through 356. Hence, the
probability of picking out one of the 357 random numbers, 000 through 356, is
0.357. If we want a better accuracy for the probability, then we can use more
digits, as for example, 0.3571 for String No. 1, and so on. We would then use
four digit random numbers, as for example, 0000 - 3570 to represent No. 1.
Suppose we select a three-digit random number as if picking out a lottery
number and it is 652 (a number in the range of 571 - 999); then we select
String No. 4, "110". We repeat this process for n strings.
 Suppose that in our experiment, we generated n = 4 random numbers, 483,
091, 652, and 725, and selected strings accordingly as No. 3, 1, 4, and 4 in this
order. The tally is as follows.

 npi Actual Count
 i Ai Expected Count from Experiment

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 101 1.429 1
 2 001 0.286 0
 3 010 0.571 1
 4 110 1.714 2

The newly generated mating pool is:

 (New) I Ai

 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 010
 2 101
 3 110
 4 110

Iteration 1, Step 2. Crossover breeding

The following substeps are performed for all the solutions (strings), two solutions
at a time.

4 Genetic Algorithms and Evolutionary Computing

 94

(a) A pair is selected at random for mating. We determine if crossover takes place
based on a pre-fixed crossover probability. In the following, we assume that
crossover takes place.

(b) A crossing site is chosen uniformly at random over the length of each string. If
the length is L, and the crossing site is bit position k, k is chosen over [1, L-1].
For example, when L is 3, k is chosen over [1, 2]. Suppose a string of L = 3 is
101, then bit position k is defined as follows (" " indicates the crossing site):

 Bit position k: 1 2
 ↓ ↓
 String example 1 0 1

 The solution parts of the two solutions are swapped at the crossing site.

 For example, in the above, strings No. 2 and No. 3 may be selected randomly as
Substep (a):

 A2 101
 A3 110

Then k = 2 may be randomly chosen as Substep (b):

 A2 10 1

 A3 11 0

Crossover takes place, generating two new strings, A'2 and A'3 as Substep (b):

 A'2 100
 A'3 111

The remaining two strings are mated as Substep (a), with k = 1 as a random
crossing site, generating two new strings A'1 = 010 and A'4 = 110 as Substep (b).
(In this example A'1 and A'4 happen to be equal to A1 and A4, respectively, since
both A1 and A4 have the same last substring 10. In general, A'1 and A'4 are different
from A1 and A4.) The following shows the result of the crossover process.

 Crossover New
 i Ai Mate No. Site, k Population, A'i
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 010 4 1 010
 2 101 3 2 100
 3 110 2 2 111
 4 110 1 1 110

Iteration 1, Step 3. Random mutation

4.4 A Machine Learning Example: Input-to-Output Mapping

95

Mutation occurs infrequently, for example, one mutation per thousand bit
transfers. In the above example, only 12 bits are transferred. Hence, mutation is
very unlikely to occur for this iteration (the probability is 12/1000 = 0.012). If,
however, we had unusually high mutation rate of one per, say, 12 bit transfers, we
could have a mutation. By a mutation, for example, the right-most digit of A'2 may
be randomly picked out, and the string may change its value from 100 to 101.
 We repeat the above iteration processes - computation of fitness and
reproduction, crossover breeding, and possible mutation.

Iteration 2, Step 1 (a part)

 i Ai fi

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 010 2

2 100 4
 3 111 7
 4 110 6
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Total 19
 Ave 4.75
 Max 7

We see an overall improvement from the initial population to this population on the
Total, Ave, and Max. In this specific example, since the optimal solution for the
maximum fitness value 7 is already obtained, no further iteration is necessary. In
general, we would further repeat the process; usually the solutions get better and
better for every iteration, and eventually and hopefully we will find the optimal
solution.

4.4 A Machine Learning Example: Input-to-Output
Mapping

In the previous section, we studied the basic steps of the genetic algorithm using a
simple example. The example was an optimization problem, one of the most
common application categories of genetic algorithms. In general, an optimization
problem attempts to determine a solution that, for example, maximizes a profit or
minimizes a cost. In this section, we will see another simple example. The
objectives of this section are twofold: one, to better understand the basic steps of
genetic algorithms by repeating a similar process; two, to see another typical
application category of genetic algorithms, called machine learning in the domain
of input-to-output mapping.
 The basic idea of input-to-output mapping is to come up with an appropriate
form of a function, which is typically simpler than the given original mapping.
Incidentally, the terms "function" and "mapping" are synonyms and they are used
interchangeably. In general, a function from set A to set B assigns a unique element

4 Genetic Algorithms and Evolutionary Computing

 96

f(a) = b ∈ B to each element a ∈ A. The element a is called an argument of the
function f, and b is called the image of a. Set A is called the domain and set B the
range of the function.
 In our example, suppose that there are n input units, x1, ..., xn, and m output
units, y1, ..., ym. As a simple case, assume that each of the units can take either a
value of 0 or 1. Extensions of this will be that each unit can take one of the values
of {0, 1, 2, ..., 9}, or, a continuous real value between -1 and 1, etc. Each input
pattern, or simply input (for example, x1 = 0, x2 = 1, ..., xn = 0, etc.) is an argument
of a mapping. For each input, we are given an image, which is an output pattern or
simply output (for example, y1 = 1, y2 = 0, ..., ym = 1, etc.). Since each of x1, ..., xn,
can take one of two possible values, 0 or 1, there are a total of 2 × 2 × ... × 2 = 2n
input patterns, that is the size of the function domain is 2n.
 In certain application cases, all of the 2n input patterns are given corresponding
output patterns. In other cases, some input patterns may not give corresponding
output patterns, that is, the mapping information is incomplete. In either case, our
objective is to determine an appropriate function to best describe the given
mapping. Measures of the term "best" depend on a specific application. Common
measures are the accuracy of the function, the robustness and computational
efficiency. Generally, determining a function that satisfies all these criteria is not
necessarily an easy task, depending on the complexity of the problem. If, however,
a good function is determined, it can be used for many types of applications. Since
functions are defined in very general terms, they have many types of applications.
Similar discussions are given before in Section 2.8.
 One application category of functions is pattern classification. For example, an
input pattern can be a two-dimensional visual image such as given in Fig. 2.4. Each
small square is represented by xi, and its value is 1 if a part of the pattern is within
the square, 0 otherwise. In this example, output can be only one, y; its value is 1 if
the input pattern is recognized as character "A", 0 otherwise. We can extend the
output to, for example, y1 and y2. y1 will be 1 if "A"; 0 if other than "A". y2 will be
1 if the input pattern is "B"; 0 if other than "B". This type of application is called
pattern classification since input patterns are classified into "A," "B," etc. Input
patterns can be other than two-dimensional images; for example, they can originate
from acoustic, or other physical and chemical measurements, and so on.
 Another application category is control. For example, input may be temperature
and humidity measurements at various points in a building. Output may be amounts
of heat and humidity sources to be applied to various points in the building. Once
the function is determined, it can be used to efficiently control the comfortability of
the building. This concept can be applied to other control problems such as for
cars, appliances, plants, and so on.
 A third category is prediction. Given the current and recent data as input, we
want to determine a most likely future outcome as output. If we are successful in
implementing input-to-output mapping from a past experience, the function can be
used for prediction. For example, by placing data before many breakdowns of a
machine, we may be able to predict future breakdowns thereby avoiding costly
shutdowns and repairs.
 The automatic development of a function by the computer described here is
considered as one type of machine learning in AI. The concept of machine learning

4.4 A Machine Learning Example: Input-to-Output Mapping

97

is that the computer gets smarter by itself, that is, automatic acquisition and
discovery of knowledge from data and experience. In the following, we will see a
simple example of a mapping. Our pace will be faster than in the previous section,
since we have already understood basic steps of genetic algorithms.

Problem description

As a special case of a mapping described above, consider three input units, x1, x2,
and x3, and one output unit y. Each unit can take a value of either 0 or 1. Our
specific target mapping is given as follows (yt stands for target y):

 x1 x2 x3 yt

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0 1
 0 0 1 0
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

For example, the second line of the table says that when x1 = 0, x2 = 0 and x3 = 1,
the output y should be 0. We note that the complete information of 23 = 8 images
are given in this example.

Representation of the function

We would like to develop our function as follows. We introduce weights, denoted
as w1, w2, and w3, where each wi can be either -1, 0 or 1. Given x1, x2 and x3, we
first compute weighted sum, s, as: s = w1x1 + w2x2 + w3x3. We then determine
computed y, yc, as: yc = 0 if s < 0; yc = 1 otherwise. A graphical interpretation of
our method is illustrated in Fig. 4.2. (If you have already studied Chapter 2, you
see this is a special case of a simple perceptron discussed in Section 2.7.)

Fig. 4.2 A graphical interpretation of our functional structure for (x1, x2, x3) to y.

4 Genetic Algorithms and Evolutionary Computing

 98

Some students might wonder why not use the original table for our objective rather
than this somewhat complicated method we are about to explore. For our simple
example of only eight table entries, the original table can be used. For a larger
problem, the table form is not practical. For example, if there are 10 input units,
then even if we still assume that each unit can take either 0 or 1, and only one
output unit y, there will be 210 ≈ 103 = 1000 table entries. If there are 100 input
units, then there will be 2100 ≈ 1030 table entries. Our weighted sum method and its
extensions may allow us to represent a function in a more concise way than using
the original table.

Genetic algorithm strategy

Our problem is to determine values of w1, w2, and w3 in such a way that the
resulting function is as close to the original table, hopefully achieving a perfect
match. In our genetic algorithm, a natural choice of each solution is a set of values
of w1, w2, and w3. For example, (w1, w2, w3) = (-1, 0, 1) is a solution. If we want to
use a binary string to represent a solution, we could use two bits for each of -1, 0
and 1, as for example: 00 for 0, 01 for 1, 11 for -1, and 10 not used. In this
representation, the solution (-1, 0, 1) will be 110001. We would treat two bits as an
inseparable string unit, so that a crossing site does not cut a unit into two halves.
However, this bit representation is not necessary, and we will use -1, 0 and 1 in the
following.
 Given a solution, we can compute yc and see how they match yt, the target y. For
example, for solution (-1, 0, 1), we have the following.

 x1 x2 x3 yc yt yc = yt?
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0 1 1 yes
 0 0 1 1 0 no
 0 1 0 1 1 yes
 0 1 1 1 0 no
 1 0 0 0 1 no
 1 0 1 1 1 yes
 1 1 0 0 1 no
 1 1 1 1 1 yes
 ⎯⎯⎯
 4 yes

For example, the second line of the above is computed as: s = -1 × 0 + 0 × 0 + 1 ×
1 = 1; hence yc = 1.
 The greater the number of "yeses," the better the solution. Hence, let the number
of "yeses" be our fitness, f. For example, the fitness of the above solution (w1, w2,
w3) = (-1, 0, 1) is 4. A solution whose fitness is 8 represents perfect match for all
the 8 cases of yc = yt, that is, a correct solution.

Applying genetic algorithm

4.4 A Machine Learning Example: Input-to-Output Mapping

99

 Step 0. Initialization of the population

Using random numbers, suppose that the following initial population of size 4 is
generated.
 w1 w2 w3

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 1
 1 0 0
 0 1 -1
 1 -1 1

Iteration 1. Step 1. Reproduction - generation of a new mating pool

The fitness values, f, are determined as follows by counting the number of yeses for
each solution for the current population.

 w1 w2 w3 f

 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 1 4
 -1 0 0 2
 0 1 -1 6
 1 -1 1 5

 ⎯⎯⎯
 17

Assume that the fitness probability for each solution is computed. Then the
following solutions are randomly generated according to the fitness probability
distribution. Note that the second solution in the above with f = 2 has disappeared,
while the third solution with f = 6 is generated twice in the following.

 w1 w2 w3

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 1
 0 1 -1
 0 1 -1
 1 -1 1

Iteration 1. Step 2. Crossover breeding

Suppose that the first two and last two solutions are randomly mated. Then their
crossing sites are randomly chosen as indicated. We assume that there is no
mutation.
 w1 w2 w3

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 1
 0 1 -1
 0 1 -1
 1 -1 1

4 Genetic Algorithms and Evolutionary Computing

 100

Iteration 2. New population.

After the above crossover breeding, the new population is:

 w1 w2 w3

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 -1
 0 1 1
 0 -1 1
 1 1 -1

Iteration 2. Step 1. Reproduction.

 w1 w2 w3 f

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 -1 0 -1 4
 0 1 1 6
 0 -1 1 4
 1 1 -1 7

 ⎯⎯⎯
 21

Based on the fitness probability distribution, suppose that the following solutions
are randomly generated. We note that all the above solutions are regenerated in a
different order in this specific run.

 w1 w2 w3

⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 1 1
 0 -1 1
 -1 0 -1
 1 1 -1

Iteration 2. Step 2. Crossover breeding

Suppose that the first two and last two solutions are randomly mated. Then their
crossing sites are randomly chosen as indicated. We assume that there is no
mutation.

w1 w2 w3
⎯⎯⎯⎯⎯⎯⎯⎯⎯

 0 1 1
 0 -1 1
 -1 0 -1
 1 1 -1

Iteration 3. New population

After the above crossover breeding, the new population with the fitness values is:

4.4 A Machine Learning Example: Input-to-Output Mapping

101

 w1 w2 w3 f
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 0 1 1 6
 0 -1 1 4
 -1 1 -1 4
 1 0 -1 8 ← Correct solution

 ⎯⎯⎯
 22

The last solution, (w1, w2, w3) = (1, 0, -1), is a correct one, that is, it matches all yc’s
to the corresponding yt‘s as follows.

 x1 x2 x3 yc yt yc = yt?
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 0 0 0 1 1 yes
 0 0 1 0 0 yes
 0 1 0 1 1 yes
 0 1 1 0 0 yes
 1 0 0 1 1 yes
 1 0 1 1 1 yes
 1 1 0 1 1 yes
 1 1 1 1 1 yes

 ⎯⎯⎯
 8 yes

Additional remarks

Using the simple example of this section, we have learned how genetic algorithms
can be applied to machine learning problems. The specific expression employed in
this section, a weighted sum, is just one example of representing input-to-output
mapping . Also, the input-to-output mapping is a very special case of a much
broader concept of knowledge representation. Other common forms of knowledge
representation include rule-based, frame-based, and computer programs. Genetic
algorithms can be applied to these other forms of knowledge representation.
Genetic algorithms applied to generate computer programs are briefly discussed in
Section 4.7, and applied to rule-based systems in Section 4.8.
 The specific form of a weighted sum is the most commonly employed
expression in neural networks discussed in Chapters 2 and 3. Genetic algorithms
can be applied to neural networks, that is, these two paradigms are used as hybrid
systems. For example, in many practical applications, the most difficult part of the
backpropagation model discussed in Chapter 2 is training of neural networks. It
may take hours, days, or even weeks, before a neural network is trained using the
fastest computer, or even worse, it may never converge. Genetic algorithms may
help for this problem. The basic idea is as follows:
 A set of weights, wij’s, w’ij’s, and so on, including the thresholds for the network
configuration is a solution of the genetic algorithm. This is the same idea as the
example of this section. For example, if the network has a total of 100 weights,
each genetic algorithm solution consists of 100 numbers instead of three, (w1, w2,

4 Genetic Algorithms and Evolutionary Computing

 102

w3). Each weight may be a randomly picked number between -0.5 and 0.5. We
generate, say, 20 sets or solutions for a population. Among the 20 solutions, some
would be better than the others. The goodness or fitness of the solutions can be
measured by the total error between the computed and target patterns; the lesser the
error, the better the solution. By applying the genetic algorithm, some bad solutions
will disappear. Good parts of good solutions, perhaps representing near-optimal
weights associated with particular segments of the neural network may be
combined by crossover breeding, producing even better solutions.
 We can further extend the above process to include other parameters such as
learning and momentum rates in the solutions. Values of these parameters are also
assigned randomly, for example, the learning rate between 0.3 and 0.7, and the
momentum rate between 0.8 and 1.0, etc. We may perform several
backpropagation iterations on the solutions. This time, the fitness may be measured
not only by the static total error at a snapshot of a solution, but also the dynamic
aspect of the solution, that is, how the solution improves over backpropagation
iterations when the weights are adjusted. In this way, in addition to the weights, a
good combination of parameter values may be found, and these values can be
changed over time.
 One major problem of this hybrid approach is that it is computationally very
expensive, for both time and storage. We can understand this because even only
one solution, neural network computation is often expensive. When we deal with,
say, 20 solutions instead of one, computation would cost much more. When
training of a network is really hard, however, this hybrid approach is one option we
can try.

4.5 A Hard Optimization Example: the Traveling
Salesman Problem (TSP)

In this section, we will discuss another common form of genetic algorithm
application, which involves permutations as solutions. Through this example, we
will learn a different way of representing solutions. Subsequent operations require
modifications because of the different representation of solutions. This example
suggests that we should be flexible for solution representation in general, and
devise appropriate operations to fit the representation.
 As discussed in the previous chapter, as an application of the Hopfield-Tank
neural network model, the TSP is a well-known hard optimization problem. For
this reason, the TSP has been chosen as a popular bench mark for many new
techniques in solving hard problems. The genetic algorithm described here is not a
particularly powerful tool for the TSP, but it is given here to illustrate representing
solutions by permutations and the subsequent algorithm. For the convenience of
the reader, the problem is stated again in the following.

4.5 A Hard Optimization Example: the Traveling Salesman Problem

103

Problem description

Given an undirected weighted graph, find a shortest tour (a shortest path in which
every vertex is visited exactly once, except that the initial and terminal vertices are
the same). Fig. 4.3 shows an example of such a graph and its optimal solution. A,
B, etc., are cities and the numbers associated with the edges are the distances
between the cities.

Fig. 4.3.An example of the traveling salesman problem and its optimal solution.

A genetic algorithm approach to the TSP

Representation of a solution

It is natural to represent each solution as a permutation of the cities, A, B, etc. The
terminal city can be omitted in the representation since it should always be the
same as the initial city. For the computation of the total distance of each tour, the
terminal city must be counted. Without loss of generality, we can arbitrarily choose
A as an initial city. (Cyclically permuted solutions belong to the same solution
class. For example, in a graph of four cities, A, B, C, and D, solutions ABCD,
BCDA, CDAB, and DABC all represent equivalent solutions. Also note that for
each solution, there is another solution by traveling the cities in backward; e.g.,
ABCD and ADCB.)
 By representing each solution by a permutation of the cities, each city will be
visited exactly once. Not every permutation, however, represents a valid solution,
since some cities are not directly connected (for example, A and E in Fig. 4.3). One
practical approach is to assign an artificially large distance (e.g., 100) between
cities that are not directly connected. In this way, this type of invalid solution that
contains consecutive non-adjacent cities will disappear in one iteration of the
reproduction process.

Fitness function

Our objective here is to minimize the total distance of each tour. Hence, it is natural
to choose a fitness function to reflect this objective, i.e., the lesser the total

4 Genetic Algorithms and Evolutionary Computing

 104

distance, s, the more the fitness function value, f. Generally speaking, there are
many such functions. For example, we can have f = 1/s, f = 1/s2, or f = k - s, where
k is a positive constant that makes f ≥ 0.
 The selection of the fitness function is up to us. The selection affects the
performance of the genetic algorithm, e.g., the total number of iterations required
to find an optimal solution or, more importantly, whether we will be able to find an
optimal solution. There is no general formula to design the best fitness function.
When we do not adequately reflect the goodness of the solution in the fitness
function, finding an optimal solution will not be effective. When we reflect the
goodness of the solution to the fitness too weakly, longer iterations will be
required. On the other hand, if we are too eager to be effective in searching for an
optimal solution and over-emphasize the goodness of the solution, then we might
end up with too many clones within a few generations (iterations). Such loss of
diversity in the population is undesirable; the best solution obtained from such a
population may be far from optimal.

Crossover operations

We realize that an ordinary crossover operation that randomly picks out a crossing
site and then swaps string parts does not generally yield valid solutions. For
example, in Fig. 4.3, suppose we have the following two solutions for a crossover
operation:

 crossing site
 ↓
 A1 A D E B C
 A2 A D C E B

The resulting two new strings, A'1 and A'2, then, will be:

 A'1 A D E E B
 A'2 A D C B C

in which the same cities are visited more than once. Generally, because of
operations such as crossover, which are unique to genetic algorithms, special
techniques need to be devised for the representations of solutions. For our TSP, we
index the cities and manipulate the indices.

Re-representation of a solution by an index list

Make an initial index table by indexing numbers 0, 1, 2, ..., to Cities A, B, C,
For example, if the number of cities is five, then we have the following:

 City A B C D E
 Index 0 1 2 3 4

Initialization of an index list. Pick out the index for the first city to be visited and
enter it in an empty index list. (When we arbitrarily choose A to be the first city, the

4.5 A Hard Optimization Example: the Traveling Salesman Problem

105

first index will always be 0.)

Repeat the following for all the remaining cities:

 Remove the city from the index table and re-index the remaining cities.
 Pick out the index for the next city to be visited and add it to the index list.

The resulting index list represents the tour (solution).

Example. A D E B C

 Next City
 Index Table and Index Index List
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 A B C D E A
 0 1 2 3 4 0 0

 B C D E D
 0 1 2 3 2 02

 B C E E
 0 1 2 2 022

 B C B
 0 1 0 0220

 C C
 0 0 02200 ←

The last index list, 02200, represents a solution of A D E B C.

Crossover operations on index lists

Suppose that we apply this index list method to two solutions, A D E B C and A D
C E B. The first solution can be represented as 02200 as we saw in the previous
example, and the second solution, A D C E B, can be represented similarly as
02110. Let us perform an ordinary crossover operation on these index lists
assuming the following crossing site:

 crossing site
 ↓
 A1 A D E B C 0 2 2 0 0

 A2 A D C E B 0 2 1 1 0

The resulting new solutions are:

4 Genetic Algorithms and Evolutionary Computing

 106

 ↓ New solution
 A'1 0 2 2 1 0 A D E C B
 A'2 0 2 1 0 0 A D C B E

 To obtain a solution of cities, A D E C B, back from an index list, 0 2 2 1 0, we
can use a work sheet with the same format as above to find the index list from the
city list. The difference is in finding the cities from the indices.

 Next City
 Index Table and Index Index List
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 A B C D E A
 0 1 2 3 4 0 02210

 B C D E D
 0 1 2 3 2 2210

 B C E
 0 1 2

In the above, A'1, A D E C B, with a total distance of 31, happens to be an optimal
solution. The second solution A'2, A D C B E, is invalid since A and E are not
directly connected.
 Are the solutions obtained by crossing over index lists guaranteed to yield
permutations of cities? Yes, they are. In general, for n cities, each index list has n
indices. If we can start from any city, the first index ranges from 0 to n - 1 (if we
always start from A, then the first index is always 0). The second index ranges
from 0 to n - 2, ..., and the last index is always 0. When we swap parts of index
lists, each index in the lists still satisfies its range in the position. Hence, cities can
be picked out from index tables and these cities are unique in each solution.

Mutation

Mutation represents unpredictable small changes in the solutions. For example,
occasional random swapping of two cities can be treated as mutation.

Global procedure and iteration termination conditions

There are many variations on how to carry out the algorithm. The following is a
simple one. For a given weighted graph, we set a population size. The first
generations (iteration) of solutions in the population are randomly generated. Then
iterations proceed as described above. In each generation, the best (shortest) total
distance among the solutions may be recorded to keep track of the progress over
the iterations. When the best total distance does not improve for a certain number
(say, 5 or 10) of consecutive iterations, we may assume that the solutions are
converged and the best solution for this particular run is reached. As a safeguard,
we may set the maximum number of iterations to a certain fixed constant (e.g., 100,

4.5 A Hard Optimization Example: the Traveling Salesman Problem

107

500, or 1000, depending on the size of the problem) so that the algorithm will not
continue for an excessive amount of time.
 There is no theoretical guarantee that the "optimal" solutions from genetic
algorithms are truly optimal. That is, solutions can converge before reaching the
true optimal; this phenomena is called premature convergence. For this reason, a
certain number of (say, 10) runs may be carried out; each time we start with a
different initial population by using a different random number seed. The best
solutions from different runs can be compared, and the best among the best
solutions can be chosen as "optimal" from the experiment. For practical purposes,
with careful implementation of the technique, this process should provide adequate
solutions for most problems.

Partially matched crossover (PMX) operation

When dealing with permutations as solutions, simple crossover operations will
result in invalid solutions. In the above TSP, for example, a crossover of two
solutions, A D E B C and A D C E B, yields two invalid solutions, A D E E B
and A D C B C. To avoid this problem, we introduced the method using index lists.
The PMX operation is another technique which directly operates on permutations
and still gives permutations. It can be used not only for the TSP, but also any other
problems that involve permutations.
 We illustrate this technique by an example. We will use numbers 1, 2, ..., instead
of letters A, B, Assume that each solution in this example is a permutation of 10
numbers, 1, 2, ..., 10. Pick two crossing sites uniformly at random. The substrings
between the sites are called the matching sections.

 A1 9 8 4 5 6 7 1 3 2 10
 A2 8 7 1 2 3 10 9 5 4 6

Consider the two-element permutations in the matching sections: (5, 2), (6, 3), and
(7, 10). Permute each of these two-element permutations in each string of A1 and
A2. For example, when the two-element permutation (5, 2) is applied to A1: 9 8 4
5 6 7 1 3 2 10, we will have 9 8 4 2 6 7 1 3 5 10. When the next two-element
permutation (6, 3) is applied to 9 8 4 2 6 7 1 3 5 10, we will have 9 8 4 2 3 7
1 6 5 10. Finally when the permutation (7, 10) is applied, we will have 9 8 4 2 3
10 1 6 5 7. String A2 is permuted similarly. The resulting two new strings, A'1 and
A'2, then will be:

 A'1 9 8 4 2 3 10 1 6 5 7
 A'2 8 10 1 5 6 7 9 2 4 3

The numbers in the matching sections of A1 and A2, (5, 6, 7) and (2, 3, 10), have
been in effect swapped between the two solutions as if in an ordinary crossover
operation. The two new strings, A'1 and A'2, remain as valid permutations, since the
numbers are actually permuted within each string.

4 Genetic Algorithms and Evolutionary Computing

 108

4.6 Schemata

In the preceding sections we have learned the basic concept and steps of genetic
algorithms. They are like a cookbook recipe; to randomly generate an initial
population, followed by processes such as reproduction, crossover breeding and
mutation. In this section, we will discuss some theoretical aspects of genetic
algorithms. For example, we may wonder how a good gene or a part of a solution
is likely to survive better than a worse one. What is the probability of the survival
rate or the expected count of such a gene? The answer will be derived as the
schema theorem or the fundamental theorem of genetic algorithms in this section.
 A schema (or similarity template) is a pattern of solutions. For example,
suppose that a solution is a string of four bits. Given two solutions, 1010 and 1011,
we may say the common pattern of the two strings is that the first three bits are
101. This statement, "the first three bits are 101," can be expressed more compactly
by introducing a new wild card character "*", which stands for "don't care" or
"either 0 or 1" in general. Note that we are extending our alphabet from {0,1} to
{0, 1, *} to represent the schemata. The two solutions 1010 and 1011 then
correspond to schema 101*.

Counting problems of schemata

We will consider some counting problems of schemata and solutions, which are
helpful to analyze characteristics related to schemata. In the above, we saw the two
solutions 1010 and 1011 correspond to schema 101*. Conversely, a schema
corresponds to solutions. For example, schema **11 can correspond to four
solutions: 0011, 0111, 1011, and 1111. In general, a schema containing l "*"s can
correspond to 2l solutions since each "*" can be either 0 or 1.
 Conversely again, a solution can correspond to many schemata. For example,
1010 can correspond to 101*, ****, 1010, etc. There are 24 schemata for 1010
since each bit can be either its actual value or *. In general, a particular solution of
length L contains 2L schemata. For L = 2 and a solution of 00, for example, there
are four schemata: 00, 0*, *0, and **.
 Let us consider a population of size n, where each solution has length L. The
lower bound of the number of schemata contained in this population is 2L, and the
upper bound is n⋅ 2L. The lower bound occurs when all n solutions are the same
(degenerate). In this case, since all the solutions are the same, the number of
schemata reduces to the number for a single string, which is discussed above. For
example, for L = 2 and n = 2, a population of two degenerate solutions, 00 and 00,
contains 4 schemata: 00, 0*, *0, and **. To consider the upper bound, assume that
all the solutions are different. Since each of n solutions can contain 2L schemata,
the upper bound is n⋅ 2L. The actual number, however, is usually smaller since
different solutions can contain the same schemata; e.g., schema **⋅⋅⋅* of length L is
contained in all n solutions. For example, for L = 2 and n = 2, a population of two
solutions, 00 and 11, contains 7 schemata: 00, 0*, *0, **, 11, 1*, and *1. Note that
7 is smaller than n⋅ 2L = 8, since schema ** is contained in both 00 and 11.
 The next question is how many different schemata are possible in L-bit strings.

4.6 Schemata

109

The answer is 3L since each bit can take one of three possible values; 0, 1, or *.
For example, for 2-bit strings, there are 32 = 9 schemata: 00, 01, 0*, 10, 11, 1*, *0,
*1, and **.
 We represent strings with capital letters and individual characters within a string
with lower case letters subscripted by their position, e.g., A = 1010 may be
symbolically represented by

 A = a1 a2 a3 a4

where a1 = 1 for position 1, etc. We sometimes call ai a gene and a value 0 or 1 an
allele. We count crossing sites 1, 2, ..., starting from the left-most place, i.e.,
between a1 and a2:

 Crossing site 1 2 3
 A = a1 a2 a3 a4

 A population of n strings can be represented by A, where A = (Aj, j = 1, 2, ..., n).
(A is like a vector and Aj is its component.) In particular, to represent a population
at time (generation, or iteration) t, we can write A(t).
 The order of a schema H, denoted as o(H), is the number of fixed positions (i.e.,
0's and 1's), or equivalently, (the length of schema, L) - (the number of '*'s). The
defining length of a schema H, denoted as δ(H), is the distance between the first
and last fixed string positions. For example, o(01*1) = 3, δ(01*1) = 4 - 1 = 3,
o(1***) = 1, δ (1***) = 1 - 1 = 0. The order and defining length will be used in the
next subsection.

4.6.1 Changes of Schemata Over Generations

In this subsection, we will determine how the number of strings representing a
particular schema H changes over iteration time t. We will evaluate the changes in
each of three steps; reproduction, crossover, and mutation. We will then combine
the changes into one formula to reflect all three processes.

Number of changes of strings of a schema as a result of
reproduction

Let m be the number of strings of a particular schema H contained within the
population A(t). We write m = m(H, t). For example, suppose that A(t) is a
population of four four-bit strings: 1010, 1011, 0000, and 0001. Schema H = 10**
is contained in A(t), and m(H, t) = 2, for the two strings 1010 and 1011.
 During reproduction, a string, Ai is copied according to its fitness, i.e., the
probability pi = fi/ Σfi. The expected number (count) of strings of Ai in the new
mating pool is npi. Assume that f(H) is the average fitness of the strings
representing schema H at time t. Then

 m(H, t + 1) = m(H, t) ⋅ n ⋅ ()
i

f H

f∑

4 Genetic Algorithms and Evolutionary Computing

 110

 We may understand this equation as follows: f(H)/Σfi is the probability of one
string with the average fitness for schema H. This probability times m(H, t) gives
the total probability for the group of strings representing schema H. Finally,
multiplying this quantity by n, the population size, determines the expected number
of the generated strings representing schema H at t + 1. Using the average fitness
of the entire population, fav = (Σfi)/n, the above can be rewritten as

 m(H, t + 1) = m(H, t) ⋅
()

av

f H

f
.

That is, a particular schema grows (or decays) as the ratio of the average fitness of
the schema to the average fitness of the population. For example, if fav = 100 and
f(H) for a particular schema is 120 at time t, then m(H, t + 1) will be 1.2 times m(H,
t). We note that values of both fav and f(H) change over time t. For the moment, as a
gross approximation, if we assume this ratio f(H)/fav = 1.2 to be stationary, i.e., it
does not change over time starting at t = 0, then m(H,t) = m(H, 0) ⋅ (1.2)t. More
generally, if the ratio is α, rather than 1.2, then m(H, t) = m(H, 0) ⋅ αt. That is, m(H,
t) is an exponential function of time, t; the function grows when α > 1, and decays
when α < 1. Exponential functions grow or decay much faster than other common
functions such as polynomials (e.g., t,t2, etc.).

Effect of crossover on schemata

The effect by the pattern of the schema and the crossing site

Example:
 crossing site
 ↓
 A = 01 0100
 H1 = *1 ***0
 H2 = ** *10*

In the above example, both schemata H1 and H2 are contained in string A. We want
to see whether H1 and H2 will be still contained in the offspring of A. When A is
mated with a different string, the characteristics of the schema H1 may be lost since
the two bits (1 in position 2 and 0 in position 6) will be placed in different
offspring. The characteristics of schema H2 (i.e., 1 in position 4 and 0 in position
5), however, will definitely remain, since these two positions go together to a
single offspring.
 As we see in this example, whether the characteristics of the schema survive or
are destroyed depends on two major factors. One is the pattern of the schema; the
other is the crossing site. For example, H1 above will survive only if the crossing
site is 1, whereas H2 will survive most of time except the case where the site is 4.
For H1, *1***0, for example, there are L - 1 = 6 - 1 = 5 possible crossing sites:

4.6 Schemata

111

 L - 1 possible crossing sites
for a schema of length L

 ↓ ↓ ↓ ↓ ↓
 H1 = * 1 * * * 0

Among those, if the site falls on one of the positions within the defining length
(i.e., the last fixed position 6 - the first fixed position 2) 4, then H1 will be
destroyed. That is, the probability that the characteristics of H1 will be destroyed in
the offspring is 4/5. Here we assumed that all the possible crossing sites are equally
likely to be chosen. In general, the probability that a schema will be destroyed is

 pd =
()

1

H

L

δ

−
.

The effect by mate

In addition to the pattern of the schema and the crossing site, there is another factor
that affects whether the characteristics of a schema survive or not: the pattern of the
mate, i.e., the second parent of the offspring. When the pattern of the mate contains
parts of the schema, the characteristics of the schema may survive. (In the above
example of H1 = *1 ***0, the mate has either *1 or ***0, or both.) Consider the
following:

Example. A pattern of the mate affects the survival of the schema characteristics.

 crossing site
 ↓
 H1 = *1* ***0
 A = 011 1000

Since the crossing site is inside of the schema, the characteristics of the schema
would be destroyed using the first two major factors. The actual offspring,
however, depend on the mate. For example, if the mate B is:

 BB1 = 000 1111

Then the offspring are:

 A' = 011 1111
 B'1 = 000 1000

and the characteristics are lost. However, if the mate B is:

 BB2 = 000 0000

Then the offspring are:

4 Genetic Algorithms and Evolutionary Computing

 112

 A' = 011 0000
 B'2 = 000 1000

and the characteristics survive in A'.

The combined effect

In the following, we assume that the survival of the schema characteristics by mate
is not a dominant factor, and include its effect in the form of inequalities. When the
string length L is large, and each population has diversified solutions, this effect by
mate will be small. The probability that a schema will be destroyed is now:

 pd ≤
()

1

H

L

δ

−

Note that the equality "=" in the previous equation for pd is replaced with the
inequality "≤", since there can be some additional survivals from mates. In the
following, inequalities, "≤" and "≥" are due to the effect by mate. The probability ps
that a schema will survive is 1 - pd, i.e.,

 ps = 1 - pd ≥ 1 -
()

1

H

L

δ

−
.

Let the crossover process itself be performed with a certain probability, pc (i.e., the
crossover will not take place with the probability 1 - pc). Then the probability that a
schemata will be destroyed is

 pd ≤ pc ⋅
()

1

H

L

δ

−
.

The probability of survival in this case is

 ps = 1 - pd ≥ 1 - pc ⋅
()

1

H

L

δ

−
.

Combined effect of reproduction and crossover

As discussed before, after reproduction, a particular schema grows (or decays) by:

m(H, t + 1) = m(H, t) ⋅
()

av

f H

f

Assuming the reproduction and crossover operations are mutually independent, the
growth (or decay) of a particular schema after these two operations is the product
of the two expressions corresponding to the two operations:

4.6 Schemata

113

 m(H, t + 1) ≥ m(H, t) ⋅
()

av

f H

f

()
1

1
c

H
p

L

δ
−

−
⎡ ⎤
⎢ ⎥⎣ ⎦

.

Again, assuming that the factor stays constant, schema H grows exponentially with
the factor. The factor depends on two parameters: f(H), the fitness, and δ(H), the
defining length. Those schemata with high fitness values and short defining lengths
are more likely to survive and grow.

Mutation effect

Let a single position in string A be changed by mutation with probability pm (i.e., a
single position does not change with probability 1 - pm). In order for a schema H
contained in A to survive, all the fixed positions of H must stay the same in A. For
example, suppose H = 1 * * 0, and because of mutation, A = 1110 is changed to
A’= 0110; then H is the lost in A’. The survival probability of each position is 1 -
pm, and there are o(H) fixed positions (remember o(H), the order of H, is the
number of fixed positions in H). Hence, the survival probability of the schema H is
obtained by multiplying 1 - pm by itself o(H) times; i.e., the survival probability =
(1 - pm) o(H). For small values of pm (i.e., pm << 1), we have (1 - pm)o(H) ≈ 1 - o(H) ⋅
pm (by the Taylor series expansion of calculus). Summarizing all the above, and
using the following approximation:

()

1
1

c
H

p
L

δ
−

−
⎡ ⎤
⎢⎣ ⎦⎥

 ⋅ (1 - o(H) ⋅ pm) ≈ 1 - pc ⋅
()

1

H

L

δ

−
 - o(H) ⋅ pm

we have

 m(H, t + 1) ≥ m(H, t) ⋅
()

av

f H

f

() ()1 .
1

c m
H

p o H
L

δ
− −

−
p⎡ ⎤

⎢ ⎥⎣ ⎦

This is the schema theorem or the fundamental theorem of genetic algorithms.
This determines the expected count of strings of a particular schema with combined
effects of reproduction, crossover, and mutation.

4.6.2 Example of Schema Processing

In this example, each population is a set of four four-bit strings. The fitness value
of each string is simply the binary number represented by the string as a whole, as
appeared in Section 4.3. The following table shows a randomly generated initial
population, the associated values of the strings, and actual counts of newly
generated strings. We assume that pc = 1, i.e., the crossover process takes place in
all strings.

4 Genetic Algorithms and Evolutionary Computing

 114

String processing 1

 Expected Actual Count
 Randomly Generated Fitness Probability Count in String
i Initial Population Ai fi pi n.pi Processing 2
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1 1010 10 0.345 1.379 1
2 0010 2 0.069 0.276 0
3 0101 5 0.172 0.690 1
4 1100 12 0.414 1.655 2
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Total 29 1.000 4.000 4
 Average 7.25 0.250 1.000 1
 Max 12 0.414 1.655 2

In the following, we will consider two schema, H1 = 0*** and H2 = 1*0*.

Schemata processing

 i for Schema Average
 Representative Ai Count fi Fitness, f(H)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 H1 0*** 2,3 2 2, 5 3.5
 H2 1*0* 4 1 12 12

String processing 2-1, reproduction

Suppose that the following four new strings Ai are reproduced. Then mates and
crossing sites are selected, all at random, as shown.

 i Ai i for Mate

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 110 0 2
 2 010 1 1
 3 10 10 4
 4 11 00 3

Schema processing 2-1, after reproduction

 i for Expected Actual
 Representative Ai Count Count
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
H1 0*** 2 0.966 1
H2 1*0* 1, 4 1.655 2

The expected counts are determined by the formula m(H, t + 1) = m(H, t) ⋅ f(H)/fav.
For H1, we have m(H1, 2) = m(H1, 1) ⋅ f(H1)/fav = 2 × 3.5/7.25 = 0.966. For H2, we
have m(H2, 2) = m(H2, 1) ⋅ f(H2)/fav = 1 × 12/7.25 = 1.655.

4.6 Schemata

115

String processing 2-2, crossover breeding

Based on the outcome of String processing 2a, the following new population is
generated:

 i Ai fi

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 1 1101 13
 2 0100 4
 3 1000 8
 4 1110 14
 ⎯⎯⎯
 Total 39
 Average 9.75
 Max 14

Schema processing 2-2, after crossover breeding

 i for Expected Actual
 Representative A'

i Count Count
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
H1 0*** 2 0.966 1
H2 1*0* 1, 3 0.552 2

The expected counts are determined by the formula m(H, t+1) = m(H, t) ⋅ {f(H)/fav}
[1 - pc ⋅ δ(H)/(L - 1)]. For H1, we have m(H1, 2) = 0.966 × [1 - 1 × 0/3] = 0.966.
For H2, we have m(H2, 2) = 1.655 × [1 - 1 × 2/3] = 0.552.

The significance of schemata

As we have seen in this section, the concept of schemata leads to some theoretical
foundations of genetic algorithms, represented by the schema theorem. The schema
theorem tells us which and how parts of the solutions are likely to survive and
grow as iterations proceed. In effect, the genetic algorithm searches for good
partial solutions. Such underlying mechanism would be more effective than
working on the entire solution string which has a large number of combinatorial
alternatives. A partial good solution can then become a building block. Building
blocks for different portions of a string are found, then they are combined to form a
good solution for the entire string. If we can find such building blocks by
inspection, they could also be manually placed together to form good solutions.
The concept is a widely known approach called the divide-and-conquer method.
This is the basic idea of the schemata.
 There are, however, some questions raised whether the above view on schemata,
the good ones always survive and grow, is true. For one, no automatic selection,
calculation or operation is ever explicitly and directly performed on specific
schema by the genetic algorithm. In fact, there have been papers showing examples
in which this view is not necessarily true. For example, suppose that the schema
11*** has a high average fitness. After a certain number of generations, almost all

4 Genetic Algorithms and Evolutionary Computing

 116

solutions may be in form of 11***. Then the schema **00* for these populations
with heavy concentrations on 11*** may not be given an accurate evaluation, since
in effect, we are dealing with the schema 1100*, rather than intended **00*.
 Theoretical analysis of how actually the schema theorem works is a difficult
problem. For most practical applications, however, it basically appears to hold. For
more, see Mitchell (1996) as a starting point.

4.7 Genetic Programming

Genetic programming is a subfield of genetic algorithms, where each solution is a
computer program. To understand the basic idea, we present a simple example
below.

Example. Boolean exclusive-or (XOR) function

The goal of the problem is to express the boolean XOR function by using the three
basic boolean operators, OR, AND, and NOT. The OR, AND, and XOR are binary
operators (which means that each operator takes two operands), and NOT is a
unary operator (which means it takes one operand). In this example, the binary
operators are used as prefix operators, e.g., an expression can be (AND P Q),
rather than (P AND Q) for infix operators. Here P and Q are boolean variables,
i.e., each of P and Q takes one of two values 0 (False) and 1 (True).
 Each solution for this problem is a boolean expression consisting of boolean
operands and the OR, AND, and NOT operators. Although a solution of a boolean
expression is not a typical program, we can extend this format to include common
program elements such as assignment, loop, and if statements. Manipulation of
these target programs can be implemented in any common computer language, but
the most convenient ones are symbolic AI languages such as Lisp and Prolog.
 The XOR function takes two operands, P and Q. Since each of P and Q can take
one of two values, 0 and 1, there are four possible values for P and Q. The XOR
function is defined as follows for these four cases:

 P Q (XOR P Q)

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 0 0 0
 0 1 1
 1 0 1
 1 1 0

 Our task is to generate this XOR function by using OR, AND, and NOT. As in
an ordinary genetic algorithm, we will randomly generate the initial population of
solutions. Each solution is a boolean expression involving OR, AND, and NOT
operators and the operands P and Q. Fitness values are determined, crossover
breeding is carried out, and occasional mutation may take place. For example, we
may have the following two solutions at some point:

4.7 Genetic Programming 117

 A1 (AND(OR P Q) (AND P Q))
 A2 (AND(OR (NOT P) Q)) (NOT (AND P Q)))

Each solution can be interpreted as representing a tree. Each operator is the root of
the tree or a subtree; each operand or a compound operand (a subtree) is a node of
the tree. A crossing site may be picked out randomly, and independently for each
solution, at the root of a subtree. Randomly chosen crossing sites for our particular
example are indicated by above. By crossover operation, we swap the entire
subtrees of the two solutions. In our example, the offspring will be:

 A'1 (AND (OR P Q) (NOT (AND P Q)))
 A'2 (AND (OR (NOT P) Q)) (AND P Q))

The fitness function for this problem may be defined as the number of P and Q
combinations that matches the answer, XOR. A solution with the fitness value of 4
will be an optimal solution. The boolean values for different P and Q values and
the fitness values for the four solutions, A1, A2, A'1, and A'2, are summarized as
follows:

P Q (XOR P Q) A1 A2 A' A'2
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

0 0 0 0 1 0 0
0 1 1 0 1 1 0
1 0 1 0 0 1 0
1 1 0 1 0 0 1
 f = 1 2 4 1

We can see that A'1 is an optimal solution.

In the previous example, we sought any boolean expression that realizes (XOR P
Q). Since such a boolean expression is not unique, we could have other answers,
possibly longer expressions or ones containing redundant sub-expressions. To
discourage such longer answers, we can modify the fitness function. For example,
we may add new terms: 3 - 0.1 × (number of operators) to the original fitness
function.
 Mutation in this example can be performed by negating an operand or
compound operand. For example, P may be changed to (NOT P), or (NOT (AND
P Q)) may be changed to (AND P Q). This is analogous to changing a binary bit
from 0 to 1, or from 1 to 0 in an ordinary genetic algorithm.
 To extend the solution format of boolean expressions to include common
program elements such as assignment, loop, and if, statements, we may represent
them in prefix form. For example, the assignment "x = a * b + c" can be
represented as (= x (+ (* a b) c)); "if x > 0, y = 1" can be represented by (if (> x
0) (= y 1)). These expressions can be interpreted as representing trees, and crossing
sites can be picked out at the roots of subtrees. Fitness functions will be defined to
reflect whatever the programs are supposed to achieve.

4 Genetic Algorithms and Evolutionary Computing

 118

4.8 Additional Remarks

Classifier systems: applying genetic algorithms to machine
learning on rule-based systems

In Section 4.4, we have seen an application of a genetic algorithm to one particular
form of machine learning, an input-to-output mapping by a weighted sum. In that
example, the machine learns by finding correct values of the weights. Machine
learning refers to any technique by which the machine (computer) gets smarter, that
is, more knowledgeable, by itself.
 A knowledge base can be represented by a set of rules (called production rules).
Each rule can be in the form of "if <condition> then <action>." (The name is
"production rule" since it produces the action based on the condition.) A rule (or a
set of rules) can be a solution of the genetic algorithm. The condition and action
parts can be represented as a string or any other appropriate form. A system
consisting of such solutions is called a classifier system. We can define a fitness
function to reflect the goodness of each rule in terms of achieving the goal. We can
select mating pools for good rules, then perform crossover breeding to create new
offspring rules. Occasional mutation may create unexpectedly innovative ideas as
new rules. In these processes, the knowledge base will get increasingly better
automatically.

The significance of genetic algorithms

As we have seen, the major ingredients of the genetic algorithm are random
generation of solutions, mating (crossover operations) of the solutions, mutation of
the solutions, and evolution of the solutions based on the fitness values. In very
general terms, the genetic algorithm is a guided random search method. We use
randomness, which depends on chance, but we also incorporate some guidance to
search solutions effectively. Neural network algorithms are also guided random
search methods. For example, in the backpropagation model, initial weight values
are randomly assigned, but their succeeding values are guided to change in a way
to minimize the error between the output and target values. The genetic algorithm
is a probabilistic guided random search since it guides its search based on
probability. The guided random search is in contrast to blind random search
methods. The Monte Carlo method for random number simulation is a typical blind
random search method. Examples of blind random searches include random
number simulations of neutron behavior in an atomic reactor lead shield wall, and
queuing lines at bank tellers.
 As we also have seen, genetic algorithms can be used for optimization problems
and machine learning. When we think of a search space to find an optimal or target
point, the genetic algorithms search from a population of points, rather than a
single point in the space. The genetic algorithms use the objective (fitness) function
itself, not derivatives or other auxiliary quantities. The characteristics of a genetic
algorithm as an optimization technique are common to the guided random search
method. For example, the search can be trapped in a local minima. The answers
obtained from genetic algorithms are not guaranteed to be globally optimal. This

Further Reading

119

contrasts with most classical optimization techniques such as the Lagrange
multiplier method in calculus, and linear or dynamic programming methods in
operations research. These classical methods usually guarantee optimal solutions.
Why, then, bother to use genetic algorithms that do not guarantee optimal
solutions? The answer is because there are so many hard problems for which the
classical methods do not work well or take too much computation time. Guided
random search methods, such as genetic algorithms, work for some of these
problems. One important practical application category is hybrid systems, i.e.,
combinations of genetic algorithms and other areas such as neural networks, fuzzy
systems, and expert systems.
 The advantages and disadvantages of genetic algorithms are somewhat similar to
those for neural networks. Some advantages include: self-guidance, self-
organization, machine learning capability, robustness, flexibility, simple and
straightforward computation, and easy implementation of parallelism.
Disadvantages include the chance-dependent outcome and lengthy computation
time, yet we may or may not obtain satisfactory solutions.
 Many general and theoretical problems of genetic algorithms remain to be
further investigated. They include: On what types of problems will the genetic
algorithms be effective or not effective. Compared with other methods, such as
neural networks, for what types of problems do genetic algorithms outperform
others? How can we theoretically determine the best parameter values, such as the
population size, mutation rate, etc.? How do the basic operations such as
reproduction, crossover breeding, and mutation affect the macroscopic behavior of
genetic algorithms such as convergence of solutions.

Further Reading

Well-written books for further study of general genetic algorithms:

D.E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley, 1989.

M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.

Series, each carrying many books:

The Complex Adaptive Systems Series published by MIT Press carries many books
including the following two titles that cover some fundamentals of genetic
algorithms and extensive materials on genetic programming:

J.R. Koza, Genetic Programming, MIT Press, 1992.

J.R. Koza, Genetic Programming II, MIT Press, 1994.

Springer publishes the following three series. Genetic Algorithms and
Evolutionary Computation, Natural Computing, and Studies in Computational
Intelligence. The first series lists the following book.

D.E. Goldberg, The Design of Innovation, Springer; 2002.

4 Genetic Algorithms and Evolutionary Computing

 120

Journals:

IEEE Transactions on Evolutionary Computation
Evolutionary Computation, MIT Press.
Artificial Life, MIT Press.
Machine Learning, Springer.

Conference proceedings that include many theoretical and practical developments
in the field.

 Genetic and Evolutionary Computation Conference (GECCO).

IEEE Congress on Evolutionary Computation.

The following workshop proceedings have been published every other year since
1991 and focus on theoretical foundations in the field.

Foundations of Genetic Algorithms, Morgan Kaufmann.

Additional references:

J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT
Press, 1992.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd
Ed., Springer-Verlag, 1998.

5 Fuzzy Systems

5.1 Introduction

The term "fuzzy systems" here includes fuzzy sets, logic, algorithms, and control.
The fundamental idea common to all of these "fuzzy domains" is the exploitation of
the concept of fuzziness. The key concept of fuzziness is that it allows a gradual and
continuous transition, say, from 0 to 1, rather than a crisp and abrupt change between
binary values of 0 and 1. This may sound too simple, but traditional set theory and
logic deal with only discrete rather than continuous values. For example, an element
in an ordinary set (crisp set) either belongs to the set (which may be represented by
a 1) or does not (which may be represented by a 0). Similarly, in ordinary logic, a
proposition is either true (which may be represented by a 1) or false (which may be
represented by a 0). We had never dealt with a situation like an element which
belongs to a set with a degree of 30% or a proposition is half true. Fuzzy systems
extend the traditional fields by incorporating such partial truthfulness. We may say
the concept of fuzziness is the science of continuum, especially for traditionally
discrete disciplines. As we will see in this chapter, extending crisp to continuous in
these fields turns out to be useful for certain types of applications.

In what areas are fuzzy systems effective and why?

Primary types of applications for which fuzzy systems are particularly useful are
difficult cases where traditional techniques do not work well. The most successful
domain in terms of practicality has been in fuzzy control of various physical or
chemical characteristics such as temperature, electric current, flow of liquid/gas,
motion of machines, etc. Also, fuzzy systems can be obtained by applying the
principles of fuzzy sets and logic to other areas. For example: fuzzy
knowledge-based systems, such as fuzzy expert systems, which may use fuzzy
if-then rules; "fuzzy software engineering" which may incorporate fuzziness in their
programs and data; fuzzy databases which store and retrieve fuzzy information;
fuzzy pattern recognition, which deals with fuzzy visual or audio signals;
applications to medicine, economics, and management problems which involve
fuzzy information processing.

 5 Fuzzy Systems

 122

Table. List of selected symbols in this chapter

Symbol Page Meaning

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
mA(x) 126 membership function of fuzzy set A for every x ∈ U, the

universe.
A' 126 complement of fuzzy set A.
∪A 128 taking the unions over all the elements in A.
Σ 128 taking the unions over a finite set.
∫U 128 taking the unions over a set, where the elements in the set take

continuous values.
∫dx 128 ordinary calculus integration; note "dx" at the end.
A × B 130 cartesian product.
∪A×B 133 taking the unions over all the elements in the cartesian product

A × B.
R o S 135 the composition of two ordinary or fuzzy relations R and S.
maxA[x] 135 taking the maximum of the x values over all the elements of
 set A.
A=>B 139 "A implies B" or "if A then B"
∧ 149 minimum operator
∨ 149 maximum operator
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 What characteristics of fuzzy systems provide better performance for certain
applications? Fuzzy systems are suitable for uncertain or approximate reasoning,
especially for the system whose mathematical model is hard to derive. For example,
the input and parameter values of a system may involve fuzziness or be inaccurate or
incomplete. Similarly, the formulas or inference rules to derive conclusions may be
incomplete or inaccurate. Fuzzy logic allows decision making with estimated values
under incomplete information. Note that the decision may not be correct, and it can
be changed at a later time when additional information is available. Complete lack of
information will not support any decision making using any form of logic. For hard
problems, conventional nonfuzzy methods are usually expensive and depend on
mathematical approximations (e.g. linearization of non-linear problems), which may
lead to poor performance. Under such circumstance, fuzzy systems often outperform
conventional methods such as a proportional, integral, and differential (PID) control.
 Fuzzy system approaches also allow us to represent descriptive or qualitative
expressions such as "slow" or "moderately fast" and are easily incorporated with
symbolic statements. These expressions and representations are more natural than
mathematical equations for many human judgmental rules and statements.
 When fuzzy systems are applied to proper problems, particularly the type of
problems described above, their responses are typically faster and smoother than
with conventional systems. This translates to efficient and more comfortable
operations for such tasks as controlling temperature, cruising speed, and so forth.
Furthermore, this will save energy, reduce maintenance cost, and prolong machine
life. In fuzzy systems, describing the control rules is usually simpler and easier,
requiring fewer rules, and thus these systems execute faster than conventional

5.2 Fundamentals of Fuzzy Sets

123

systems. Fuzzy systems often achieve tractability, robustness, and overall low cost.
In turn, all of these factors contribute to better performance. In short, conventional
methods are good for simpler problems, while fuzzy systems are suitable for complex
problems or applications that involve human descriptive or intuitive thinking.

5.2 Fundamentals of Fuzzy Sets

5.2.1 What is a Fuzzy Set?

In an ordinary (nonfuzzy) set, an element of the universe either belongs to or does not
belong to the set. That is, the membership of an element is crisp -- it is either yes or
no. A fuzzy set is a generalization of an ordinary set by allowing a degree (or grade)
of membership for each element. A membership degree is a real number on [0, 1].
In extreme cases, if the degree is 0 the element does not belong to the set, and if 1 the
element belongs 100% to the set.
 For easy understanding of a fuzzy set, let the people in an organization be the
universe. A subset of all the men in this organization is an ordinary, crisp set. Now let
us consider a set of "young" people. Obviously the "youngness" is not a step function
from 1 to 0 at a certain age, say, 30. It would be natural to associate a degree of
youngness to each element, as for example, {Ann/0.8, Bob/0.1, Cathy/1}. Perhaps
Ann is 28 years old, Bob 40, and Cathy 23. As we can see in this example, each
element in a fuzzy set is represented in the format of <element>/<degree>. (In some
books, the order is reversed, i.e., each element is represented in the format of
<degree>/<element>.)
 The membership function of a set maps each element to its degree. Having every
element in a set be associated with a degree of membership, as in the above example,
is indeed the foundation of fuzzy sets as well as fuzzy systems. That is, everything in
the world is not always a matter of black or white, true or false, yes or no, 1 or 0; it
often involves gray areas. Starting with this, we can define or derive various
properties and operations. Many of them have counterparts in ordinary sets, relations,
and logic, while some are unique to fuzzy systems, as we will see in the following.
 Note that the membership degree (0 ≤ degree ≤ 1; hereafter, sometimes we may
simply call it the degree) represents plausibility rather than the probability. Because
both fuzzy set theory and probability theory deal with values between 0 and 1,
sometimes a question is raised how these two theories differ. This book is not
intended to cover various aspects of this issue extensively, but a short discussion is
provided in Section 5.7. Starting with the basic concept of associating a degree to
each element, we can define or derive various relations, operations and properties on
fuzzy sets. The following is a simple example of fuzzy sets in form of expressions
common to ordinary as well as fuzzy set theories.

Example.

Universe U = set of five specific men: Alan, Bob, Cong, Dave, Eric.
 ={a, b, c, d, e}
Fuzzy set A ={x │ x is a young man}

 5 Fuzzy Systems

 124

Fuzzy set B ={x │ x is a tall man}

For example, fuzzy set A can be {a/0.9, b/0, c/1, d/0, e/0.2}, where 0.9 is the
membership degree of element a, Alan, and so on. When the membership degree of
an element is 0, that element can be omitted totally. Using this convention, A can also
be represented as {a/0.9, c/1, e/0.2}.

Characteristics of the elements

In the above example, the elements in U are discrete, and the cardinality of U,
denoted │U│, is finite. As in ordinary set theory, variations are possible on these
characteristics. For example, the elements are discrete but │U│ is infinite, e.g., U is
the set of natural numbers, 0, 1, 2, Or, the elements may be continuous, making
│U│ is infinite, e.g., {x │ x is a real number and -1 ≤ x ≤ 1}. In all the cases, the
degrees is between 0 and 1 inclusive, i.e., 0 ≤ degree ≤ 1.

Membership function

A membership function gives the degree of membership for every element under
consideration.

Example. Membership functions m(x) to be "young" as a function of age x

An example in table form - discrete

 x m(x)
 25 1.0
 30 0.5
 40 0.1
 50 0.0

Another example in equation form - continuous (A graph is shown in Fig. 5.1)

 1.0 for 0 < x ≤ 25
m(x) =

2

1
251

5
x⎧ ⎫−⎪ ⎪⎛ ⎞+ ⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

 for x > 25

For example, the above continuous membership function m(x) can represent a fuzzy
set in the universe of all positive real numbers as: A = {x/m(x) │ x is a positive real
number}. The value of m(x) for a specific value of x, e.g., m(30) = 0.5, is called the
membership value.

5.2 Fundamentals of Fuzzy Sets

125

Fig. 5.1.Membership function for youngness.

5.2.2 Basic Fuzzy Set Relations

As in the case of ordinary sets, we can define basic relations on fuzzy sets as follows.

Equality: A = B if and only if mA(x) = mB(x) for x ∈ U. Here mA(x) and mB(x) are
membership functions for fuzzy sets A and B, respectively. "for x ∈ U" means "for
every x ∈ U".

Subset: A ⊆ B if and only if mA(x) ≤ mB(x) for x ∈ U.

Note that the equality and subset relations in ordinary sets are included in the above
definitions for fuzzy sets. In ordinary sets, if an element of set A exists then mA(x) =
1, otherwise mA(x) = 0, in terms of fuzzy sets. If two ordinary sets are equal, and they
are interpreted as special cases of fuzzy sets, either mA(x) = mB(x) = 1 or mA(x) = mB(x)
= 0, depending on whether the element x is in the sets. Similarly, if for ordinary sets
A ⊆ B, then every element in A is found in B, in which case mA(x) = mB(x) = 1. For
those elements in B but not in A, we have mA(x) = 0 < mB(x) = 1. We also note that the
equality can be expressed in terms of subset relations as in ordinary sets, as: A = B if
and only if A ⊆ B and B ⊆ A.

"∈": the element of: This symbol is not normally used for fuzzy sets. This is
because in a fuzzy set, each element is not described as either element (∈) or
non-element (∉), but by its membership degree. However, "∈" can be used for the
universe U since the degree of every element in U is 1 as in an ordinary set.

Other relations: The support of fuzzy set A is the crisp set of every element in
U for which mA(x) in A > 0, i.e., support of A = {x │ mA(x) > 0, x ∈ U}. For example,
if fuzzy set A = {x1/0.1, x2/0, x3/0.3, x4/0, x5/0.5}, then support of A = {x1, x3, x5}. A
fuzzy singleton is a fuzzy set whose support is a set of a single element of U. For
example, if A = {x1/0, x2/0.2, x3/0}, then A is a fuzzy singleton since its support is {x2},
a set of a single element x2. If A is a fuzzy singleton whose support is {x0}, then A =
{x0/mA(x0)}.

 5 Fuzzy Systems

 126

5.2.3 Basic Fuzzy Set Operations and Their Properties

In this subsection, we will define basic fuzzy operations, such as union, which have
counterparts in ordinary sets. Fuzzy operations with ordinary counterparts include
union, intersection, complement, binary relations and composition of relations.
Operations unique to fuzzy sets (i.e., no counterparts in ordinary sets) include
fuzzification, and they will be discussed separately in the next section.
 There are several different ways of defining these operations. These different
ways of definition lead to different properties. For certain types of applications, one
definition is convenient, while for some other types of applications, other ways of
definitions may be easier for computations that follow. This is why there are different
ways of defining these basic operations. In the following, we will discuss the most
common definitions. Based on these definitions, we can derive the fuzzy versions of
familiar properties in ordinary sets, such as commutative laws, DeMorgan's laws, etc.

Union, intersection, and complement

Let fuzzy set A be represented as A = {u/mA(u) | u ∈ U}, where u is an element, mA(u)
the membership function to represent the degree, and U the universe. Here "u ∈ U"
means "every u in U."

 Union: A ∪ B = {x/max(mA(x), mB(x)) │ x ∈ U}
 Intersection: A ∩ B = {x/min(mA(x), mB(x)) │ x ∈ U}
 Complement: A' = {x/(1 - mA(x)) │ x ∈ U}

Fig. 5.2 shows an example of graphical interpretations of these operations.

Example. Membership functions to be young and old and their union and
intersection.
 Membership Membership
 function function
 Age: x to be young to be old Union Intersection
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
≤ 25 1.0 0.0 1.0 0.0
 30 0.5 0.0 0.5 0.0
 40 0.1 0.2 0.2 0.1
 50 0.0 0.6 0.6 0.0
 60 0.0 0.8 0.8 0.0
≥ 65 0.0 1.0 1.0 0.0

5.2 Fundamentals of Fuzzy Sets

127

Fig. 5.2. A graphical interpretation of two fuzzy sets and their union, intersection, and
complement.

Properties of union, intersection, and complement

Familiar properties for ordinary sets hold as follows.

Commutativity A ∪ B = B ∪ A
 A ∩ B = B ∩ A

Associativity (A ∪ B) ∪ C = A ∪ (B ∪ C)
 (A ∩ B) ∩ C = A ∩ (B ∩ C)

 Distributive laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

 DeMorgan's laws (A ∪ B)' = A' ∩ B'
 (A ∩ B)' = A' ∪ B'

 Involution
 (Double complement) (A')' = A

 Idempotent A ∪ A = A
 A ∩ A = A

 5 Fuzzy Systems

 128

Identity A ∪ ∅ = A A ∩ ∅ = ∅
 A ∪ U = U A ∩ U = A
 where ∅: empty fuzzy set = {x/0.0 │ x ∈ U} and

U: universe = {x/1.0 │ x ∈ U}

Proofs of these properties are straightforward from the definitions of these operations.
For example, the commutativity property holds for union, since A ∪ B =
{x/max(mA(x), mB(x)) │ x ∈ U} = {x/max(mB(x), mA(x)) │ x ∈ U} = B ∪ A.

A fuzzy set as the union of singletons and additional notation for
unions, ∪U, Σ, and ∫

A fuzzy set A can be viewed as the union of its constituent singletons. i.e.,

A = ∪U {x/mA(x)}

where ∪U represents taking the unions over all the elements in U. In particular, when
U is finite, we may write

A = Σi=1,n {xi/mA(xi)}

where n =│U│ and Σ stands for taking the unions (rather than summation of
numbers) of the argument {xi/mA(xi)} over the domain of i = 1 to n (i.e., replace "+"
in ordinary Σ summation with "∪"). In another particular case, when the elements in
U take continuous values, we may replace Σ with ∫ as in ordinary calculus and write

A = ∫U {x/mA(x)}

where the integral sign represents taking the unions of the arguments over the domain
of U. Note that there is no "dx" at the end of the expression as for integral in ordinary
calculus since we are not adding up strips of areas whose width is dx. Remember ∫ dx
for integration, and ∫ without dx for union in this chapter.

5.2.4 Operations Unique to Fuzzy Sets

In this subsection we define some well known unique operations to fuzzy sets, i.e.,
operations which have no counterparts in ordinary sets. These operations are
discussed here because they often appear in the literature.

Concentration

CON(A) = {x/mA²(x) │ x ∈ U}, where mA²(x) = mA(x) × mA(x). The following is a
graphical interpretation example.

5.2 Fundamentals of Fuzzy Sets

129

Fig. 5.3. An example of CON(A), concentration of set A.

Since 0 ≤ mA(x) ≤ 1, we have mA²(x) < mA(x) except mA(x) = 0 or 1. Hence, CON
makes graph narrower and steeper. Furthermore, the "degree of membership
reduction" occurs by this operation as:

() (){ }
()

2
A A

A

m x m x

m x

−
 = 1 - mA(x).

That is, the elements with low degrees of membership are reduced more than the
elements with high degrees. For example, an element with mA(x) = 0.1 is reduced to
mA ²(x) = 0.01, i.e., 90% or 0.9 decrease, whereas an element with mA(x) = 0.9 is
reduced to mA²(x) = 0.81, i.e., 10% or 0.1 decrease.

Application of concentration. This is a common way of representing "very
something" as CON("something"), e.g., "very young" = CON("young").

Dilation

DIL(A) = {x/ ()Am x │ x ∈ U}.

This is the opposite of concentration operation. Elements that are only just barely in
the set (e.g., mA(x) = 0.01) increase their degree of membership tremendously (e.g. 10
times to √mA(x) = 0.1). Fig. 5.4 is a graphical illustration example.

Normalization

Normalization of fuzzy set A, denoted NORM(A), normalizes the membership
function in terms of the maximum membership function value. That is, the
membership function of A is divided by the maximum membership function value to
give the membership function of NORM(A). The resulting fuzzy set, called the
normal (or normalized) fuzzy set, has the maximum membership function value of 1.

 5 Fuzzy Systems

 130

Fig. 5.4 An example of DIL(A), dilation of set A.

NORM(A) = {x/ ()
Max

Am x⎛
⎜
⎝ ⎠

⎞
⎟ │ x ∈ U},

where Max = max x ∈ U {mA(x)}. The following is a graphical illustration example.

Fig. 5.5 An example of NORM(A), normalization of set A.

This operation is somewhat analogous to normalization of vectors. For example,
normalization of vectors (4, 3) and (8, 6) reduces to the same vector (4/5, 3/5) of
length 1. Normalization, in some sense, reduces all fuzzy sets to the same base.

5.3 Fuzzy Relations

As ordinary sets are extended to fuzzy sets by introducing degrees of elements,
ordinary relations can be extended to their fuzzy counterparts. We start with a brief
review of ordinary relations before extending the theory to fuzzy relations.

5.3.1 Ordinary (Nonfuzzy) Relations

Cartesian products and relations

Let A and B be ordinary sets. The cartesian product of A and B is denoted A × B and

5.3 Fuzzy Relations

131

defined as A × B = {(a, b) │ a ∈ A, b ∈ B}, where (a, b) is an ordered pair and "a ∈
A, b ∈ B" means that every element of A and B are picked up. Hence, if A has m
elements and B has n elements, there will be mn elements in A × B. A binary relation
(or simply relation) R from A to B is any subset of A × B. (For more, see Section 6.2.)

 (a) (b)

Fig. 5.6.The cartesian product of the example. (a) Tabular form (F: Football, G: Golf, H:
Hockey, T: Tennis) In tabular form, we normally drop "√" from all the entries since they are
understood. (b) Diagram form.

Example. A (Person, Sport) relation.

 A = {Alan, Bob, Cathy}, B = {Football, Golf, Hockey, Tennis}.

The cartesian product of sets A and B is the set containing 3 × 4 = 12 elements as:
{(Alan, Football), (Alan, Golf), (Alan, Hockey), (Alan, Tennis), (Bob, Football), ...,
(Cathy, Tennis)}. The cartesian product can also be represented by using tabular and
diagram forms as in Fig. 5.6. These forms are easier to write and understand than the
set form.
 Suppose that a relation, R, showing who plays which sports is given as follows:

 Alan Golf, Hockey
 Bob Football
 Cathy Golf, Tennis

Then R is a subset of the cartesian product where: R = {(Alan, Golf), (Alan, Hockey),
(Bob, Football), (Cathy, Golf), (Cathy, Tennis)}. The relation can also be
conveniently represented by using tabular and diagram forms as in Fig. 5.7.

 In general, the cartesian product A × B includes all possible relations from A to B.
In the above example, this means that we consider the set of all possible ordered pairs
in form of (Person, Sport). Any relation then is represented by a subset of the
cartesian product.

 5 Fuzzy Systems

 132

 (a) (b)

Fig. 5.7. The relation of the (Person, Sport) relation example. (a) Tabular form. (b) Diagram
form.

Compositions of relations

Let A, B, and C be ordinary sets. Let R be a relation from A to B, and let S be a relation
from B to C. The composition of R and S is a new relation (called the composite
relation) denoted by R o S and defined by:

R o S = {(a, c) | (a, b) ∈ R, (b, c) ∈ S, a ∈ A, b ∈ B, c ∈ C}

The composition of two relations can be extended to the compositions of three,
four, ..., relations as, R1 o R2 o R3, and so on. Since composition operation is
associative, that is, (R1 o R2) o R3 = R1 o (R2 o R3), we can drop the parentheses and
simply write R1 o R2 o R3.

Example. Intelligent computing committee.

The National Research Council has been asked to recommend members of a
Presidential Advisory Committee for the next generation of intelligent computing.
For simplicity, we consider a much more simplified version of this problem.
"Intelligent Information Super-highway (IIS)" and "Intelligent Multimedia (IM)" are
selected as key technological areas of intelligent computing. Three prominent
scholars, Drs. Adams, Brown and Carter, are among possible candidates for
committee members. They are not necessarily experts of the two new technological
areas, but very active in more established fields of computer science, such as AI,
databases, and networking. Ideal candidates for the committee members do not have
to be experts of the technological areas, but must be active in one or more fields in
computer science to provide a fair assessment of the new technologies.
 In the following, R represents a relation between the scholars and their active
computer science fields, and S a relation between the fields and the technological
areas. The composite relation R o S then represents how the scholars are indirectly
related to the new technological areas through their computer science fields. Figures
5.8 and 5.9 are tabular and diagram forms of these relations, respectively.

5.3 Fuzzy Relations

133

Fig. 5.8.Tabular form of the relations of R: (Scholars, Fields), S: (Fields, Areas), and the
composite of R and S, R o S: (Scholars, Areas). DB: Databases, NW: Networking, IIS:
Intelligent Information Super-highway, and IM: Intelligent Multimedia.

Fig. 5.9.Diagram form of the relations of R: (Scholars, Fields), S: (Fields, Areas), and the
composite of R and S, R o S: (Scholars, Areas).

5.3.2 Fuzzy Relations Defined on Ordinary Sets Fuzzy relations

Let A and B be ordinary sets. The cartesian product of A × B is the one defined
previously for ordinary sets as: A × B = {(a, b) │ a ∈ A, b ∈ B}. A fuzzy binary
relation (or simply fuzzy relation or relation) R from A to B is a fuzzy subset of A
× B.

R = {(a, b)/mR(a, b) │ a ∈ A, b ∈ B}
 = ∪A×B {(a, b)/mR(a, b)},

where mR(a, b) is the membership function, and ∪A×B represents taking the unions of
singleton {(a, b)/mR(a, b)} over A × B. In particular, when A and B are finite, and
│ A │= m and │ B │ = n, we may write,

 5 Fuzzy Systems

 134

n

R = , () (){ }
1 1

, / ,
m n

i j R i j

i j

a b m a b
= =
∑∑

where Σ again stands for taking unions rather than adding numbers. In this case, R
can also be represented as a rectangular table called a relation matrix by placing
mR(ai, bj) as the matrix elements:

1 1 1 2 1

1 2

(,) (,) . . . (,)

. . .

(,) (,) . . . (,)

R R R

R R R

n

m m m

m a b m a b m a b

m a b m a b m a b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

When the elements of A and B are continuous, we may write

R = ∫ A ∫ B {(a, b)/mR(a, b)}.

 In particular, when A = B, the cartesian product on A is defined as A × A = {(a, b)
│ a, b ∈ A}, and a fuzzy relation on A is a fuzzy subset of A × A.

Example. A fuzzy (Person, Sport) relation.

In the (Person, Sport) example in the previous subsection, who plays which sports
may not be simply either "yes" (1) or "no" (0), but it may be more natural to associate
a certain degree to each pair. For example,

Alan
Bob

Cathy

0 0.8 0.7 0.1
1.0 0 0 0.2
0 0.9 0 1.0

F G H T

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

This is a relation matrix.
 A fuzzy graph is a directed graph whose vertices are the elements of the sets
under consideration, and whose edges correspond to the elements of the relation, i.e.,
the ordered pairs. We associate the degree of each ordered pair to each edge as its
weight. A fuzzy graph of this example is shown in Fig. 5.10.

Fig. 5.10. A fuzzy graph for the (Person, Sport) relation.

5.3 Fuzzy Relations

135

Example.

Let X = {x1, x2, x3}, and a fuzzy relation R on X be:

 R = {(x1, x1)/0.1, (x1, x2)/0.2, (x1, x3)/0.3, (x2, x1)/0.4, (x3, x2)/0.5}.

Then the relation matrix is given as follows and a fuzzy graph as in Fig. 5.11.

relation matrix =
0.1 0.2 0.3
0.4 0 0
0 0.5 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Fig. 5.11. A fuzzy graph for the above example.

k-ary fuzzy relations

As in ordinary relations, binary relations can be extended to ternary, quadruple, and
so forth, to k-ary relations in general. The cartesian product of k crisp sets, A1, A2, ...,
Ak, is represented as A1 × A2 × ... × Ak, and it is defined as the set of all the k-tuples
over the domain:

A1 × ... × Ak = {(a1, ... , ak) │ a1 ∈ A1, ..., ak ∈ Ak}.

A k-ary fuzzy relation is a fuzzy subset of this cartesian product:

R = ∪A1×…×Ak {(a1, ..., ak)/mR(a1, ..., ak)}.

Composition of fuzzy relations

Let A, B, and C be ordinary sets. Let R be a fuzzy relation from A to B, and let S be
a fuzzy relation from B to C. The composition of R and S is a fuzzy relation (called
the fuzzy composite relation) denoted by R o S and defined by:

R o S = ∪A×C {(a, c)/maxB [min (mR(a, b), mS(b, c))]},

where maxB [x] means taking the maximum of the x values over all the elements of
B. If sets A, B, and C are finite, then the relation matrix for R o S is the max-min

 5 Fuzzy Systems

 136

product of the relation matrices for R and S. The max-min product of two matrices
can be determined by replacing addition by max and multiplication by min in the
ordinary matrix multiplication.

Example.

 R S R o S
0.3 0.8

0.6 0.9

⎡ ⎤
⎢ ⎥⎣ ⎦

 o 0.5 0.9

0.4 1

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 0.4 0.8
0.5 0.9

⎡ ⎤
⎢ ⎥⎣ ⎦

For example, 0.4 in R o S is the degree for (a1, c1), and it is determined by checking
the first row elements of R and the first column elements of S, as is in ordinary matrix
multiplication. We compare 0.3 and 0.5 and record 0.3 (the min of these two
numbers); we compare 0.8 and 0.4 and record 0.4 (the min of these two numbers).
Then we take max of these recorded numbers, 0.3 and 0.4, obtaining the answer 0.4.
This process is a special case of the above general formula for R o S as: maxB [min
(m

B

⎥

R(a1, b), mS(b, c1))] = max {[min (mR(a1, b1), mS(b1, c1))], [min (mR(a1, b2), mS(b2,
c1))]} = max {[min (0.3, 0.5)], [min (0.8, 0.4)]} = max {0.3, 0.4} = 0.4.

As a special case, the matrix R may have only one row, in which case R is called a
vector. When R is a vector, R o S is also a vector.

Example.

 R S R o S

[0.2 1] o = [0.6 0.7] 0.8 0.9
0.6 0.7

⎡ ⎤
⎢⎣ ⎦

Example. A fuzzy version of the intelligent computing committee.

In the previous Presidential Advisory Committee example, it is natural to extend R
and S to be fuzzy relations, representing the degrees of their relations as follows. The
fuzzy composite relation, R o S, then can be determined as follows. Figures 5.12 and
5.13 are matrix and diagram forms of these relations, respectively.

 We note that the max-min operation for the fuzzy composition operation in the
above example may be a simple and reasonable approach. For example, Adams is
related to Intelligent Information Super-highway through two routes: Adams (0.7)
AI (0.9) IIS and Adams (0.8) Networking (0.5) IIS. We first take the minimum in
each route, since the strength of the route is limited to by the minimum. We then take
the maximum among the strengths of the alternative routes, since all routes are
possible.

5.3 Fuzzy Relations

137

Adams

 Brown

Carter

:

 AI DB NW

0.7 0 0.8
0 1.0 0
0 0 0.9

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

DB

NW

AI

 IIS IM

0.9 0.6
0 0.1
0.5 0

: s
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Brown

Carter

Adams

 IIS IM

0.7 0.6
0 0.1
0.5 0

: R s
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

Fig. 5.12.Matrix form of the relations of R: (Scholars, Fields), S: (Fields, Areas), and the
composition of R and S, R o S: (Scholars, Areas).

Fig. 5.13.Diagram form of the relations of R: (Scholars, Fields), S: (Fields, Areas), and the
composition of R and S, R o S: (Scholars, Areas).

 There are, however, no universally accepted operations for fuzzy composition
operation. If, for example, the max-min operation is not appropriate for certain
applications, we can employ some other form of operation. In fact, other forms of
fuzzy composition operations have been proposed. For example, min(a, b) may be
replaced by (a × b). This is similar to computing the probability that two mutually
independent events occur. (For example, the probability for the first coin tossing is
Head and the second tossing is also Head is 0.5 × 0.5 = 0.25.) The max(a, b)

 5 Fuzzy Systems

 138

operation may be replaced by min((a + b), 1). Other forms of operations are also
possible. The selection of operations is determined by the appropriateness for a
specific application and the simplicity.

5.3.3 Fuzzy Relations Derived from Fuzzy Sets

Let A be a fuzzy set of a universe U, and B be a fuzzy set of a universe V. The
cartesian product A × B can be defined by:

A × B = {(u, v)/min(mA(u), mB(v)) │ u ∈ U, v ∈ V}
 = ∪U×V {(u, v)/min(mA(u), mB(v))}.

Note that when A and B are ordinary sets where mA(u) and mB(v) are either 0 or 1, the
above A × B reduces to the ordinary cartesian product. A × B is a fuzzy relation from
U to V. A fuzzy relation R from A to B can be defined as R = {(u, v)/m(u, v) | m(u, v)
≤ mA(u), m(u, v) ≤ mB(v), │ u ∈ U, v ∈ V}.
 The above definitions can be extended to k-ary relations. Let A1 be a fuzzy set of
a universe U1, A2 be a fuzzy set of a universe U2, ..., and let Ak be a fuzzy set of a
universe Uk. The cartesian product A1 × A2 × ... × Ak can be defined by:

 A1 × A2 × ... × Ak

 = {(u1, u2, ..., uk)/min(mA1(u1), mA2(u2), ..., mAk(uk)) │ u1 ∈ U1,
 u2 ∈ U2, ..., uk ∈ Uk}

 = {(u
1 2 ... kU U U× × ×
∪ 1, u2, ..., uk)/min(mA1(u1), mA2(u2), ..., mAk(uk))}.

A fuzzy k-ary relation can be extended similarly.

5.4 Fuzzy Logic

5.4.1 Ordinary Set Theory and Ordinary Logic

There are similarities between ordinary (nonfuzzy) set theory and ordinary
(nonfuzzy) logic. The following table shows correspondences between these two
fields.

 Ordinary Set Ordinary Logic
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

 existence of an element true
 non-existence of an element false
 ∩ AND
 ∪ OR
 complement NOT

5.4 Fuzzy Logic

139

In ordinary propositional calculus, let A and B be propositional variables.
Implication is denoted as A => B, and read "A implies B" or "if A then B".

5.4.2 Fuzzy Logic Fundamentals

As fuzzy sets are extensions of ordinary sets, fuzzy logic is an extension of ordinary
logic. As there are similarities between ordinary sets and ordinary logic, so are
between fuzzy set theory and fuzzy logic. The following table shows these
correspondences.

 Fuzzy Set Fuzzy Logic
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 degree of membership truth value of proposition
 ∩ AND
 ∪ OR
 complement NOT

Fuzzy implication: "if A then B" and "if A and B then C"

A => B, i.e., "A implies B" or "if A then B" where A and B are fuzzy sets rather than
ordinary propositional variables. For example, "if x is young then y is small" or
simply "if young then small" is a fuzzy implication. A fuzzy implication is viewed as
describing a relation between two fuzzy sets. There are different ways of defining a
fuzzy implication as a relation. But there is no standard definition, and the choice
depends on the type of application. One common definition, particularly used in
fuzzy control, is

A => B = A × B

where A × B is the cartesian product of fuzzy sets A and B. That is, as discussed
before, suppose that A is a fuzzy set of a universe U, and B is a fuzzy set of a universe
V. Then the cartesian product A × B is:

A × B ={(u, v)/min(mA(u), mB(v)) │ u ∈ U, v ∈ V}
= {(u, v)/min(m

U V×
∪ A(u), mB(v))}.

An extension of the above is (A and B) => C, i.e., "if A and B then C." A common
definition of this fuzzy implication, particularly used in fuzzy control, is A × B × C:

A × B × C = {(u, v, w)/min(mA(u), mB(v), mC(w)) │ u ∈ U, v ∈ V, w ∈ W}

= {(u, v, w)/min(m
U V W× ×
∪ A(u), mB(v), mC(w))}.

Compositional rule of inference

Let R be a fuzzy relation from U to V, X be a fuzzy subset of U, Y be a fuzzy subset

 5 Fuzzy Systems

 140

of V, and Y = X o R. Y is said to be induced by X and R. In the above, "o" represents
the composition of X and R. Here X and Y can be viewed as row vectors whose
components are the values of the membership functions as:

 X = {u/mX(u) │ u ∈ U}
Y = {v/mY(v) │ v ∈ V}

As discussed before, X o R is the max-min product of the vector X and the relation
matrix R:

X o R = {v / [max (min (mX (u), mR (u, v))) │ u ∈ U] │ v ∈ V}

 = {v / max
V
∪ U [min (mX(u), mR(u, v))]}

Example.
 X R Y

[0.2 1 0.3] o = [0.6 1 0.4]
0.8 0.9 0.2
0.6 1 0.4
0.5 0.8 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Fuzzy Inference

1. "if A then B" and X → Y

 Fuzzy inference is based on fuzzy implication and the compositional rule of

inference discussed above. The basic steps are as follows. Let A and X be fuzzy sets
of a universe of U, B and Y be fuzzy sets of a universe V. Suppose that we are
given:

a) Implication: "if A then B"
b) Premise: X is true

and we want to determine:

c)Conclusion: Y.

To achieve the above, perform the following two steps:

Step 1. Compute the fuzzy implication, "if A then B," as a fuzzy relation R = A ×

B.
Step 2. Induce Y by Y = X o R.

Using the membership functions for A, B, and X, we can compute the membership
function for Y as follows:

 Y = X o R

5.4 Fuzzy Logic

141

 = X o (A × B)
 = {v / [max (min (mX(u), mA(u), mB(v))) │ u ∈ U] │ v ∈ V}

 = {v / max
V
∪ U [min (mX(u), mA(u), mB(v))]}.

2. "if A and B then C" and X and Y → Z

 An extension of the above is (A and B) => C, i.e., "if A and B then C," X and Y
are true, then derive conclusion Z. Let A and X be fuzzy sets of a universe of U, B
and Y be fuzzy sets of a universe V, and C and Z be fuzzy sets of a universe of W.
Then Z is computed as follows:

Z = (X × Y) o (A × B × C)
 = {w / [max (min (mX(u), mY(v), mA(u), mB(v), mC(w))) │ u ∈ U, v ∈ V]│w ∈ W}

 = {w / max
W
∪ U×V [min (mX(u), mY(v), mA(u), mB(v), mC(w))]}.

Example. "if A then B" and X → Y

Let the universe: U = {1, 2, 3, 4, 5}. We define two fuzzy sets:

 small = {1/1, 2/0.8, 3/0.6, 4/0.4, 5/0.2}
 large = {1/0.2, 2/0.4, 3/0.6, 4/0.8, 5/1}

From these two fuzzy sets, we can derive other fuzzy sets as, for example:

 not large = {1/0.8, 2/0.6, 3/0.4, 4/0.2}
 very small = {1/1, 2/0.64, 3/0.36, 4/0.16, 5/0.04}
 not very small = {2/0.36, 3/0.64, 4/0.84, 5/0.96}

Here the membership function of "very" X is computed from the membership
function of X, mX(u), by {u/mX

2(u) │ u ∈ U}. Now let our problem be described as
follows:

 Our implication: if A then B, where A = small and B = large.
 Our premise: X = not large.

What can we conclude for Y?

In this example, we first compute R by A × B, then determine the answer Y by Y = X
o R.

 Step 1. Derive R from "if A then B" by A × B, where A = small and B = large:

 5 Fuzzy Systems

 142

R =

0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 0.8
0.2 0.4 0.6 0.6 0.6
0.2 0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Step 2. Induce Y by Y = X o R, where X = not large:

 X R

Y = [0.8 0.6 0.4 0.2 0] o

0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 0.8
0.2 0.4 0.6 0.6 0.6
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = [0.2 0.4 0.6 0.8 0.8]

 In the above inference, we followed the basic steps of fuzzy inference discussed
earlier to compute R = A × B, then to determine Y by X o R. We can also obtain the
same result for Y by using the following formula, which discussed after the basic
steps.

 Y = X o R
 = X o (A × B)

 = {v / max
V
∪ U [min (mX(u), mA(u), mB(v))]}.

 Note that as a special case of the fuzzy inference discussed here, when X = A and
A is a normal fuzzy set (i.e., the maximum degree of A is 1), we can show that Y = X
o R = X o (A × B) = A o (A × B) is equal to B as follows:

 Y = A o (A × B)
 = {v / [max (min (mA(u), mA(u), mB(v))) │ u ∈ U] │ v ∈ V} B

 ={v / [max (min (mA(u), mB(v))) │ u ∈ U] │ v ∈ V} B

 = {v / max
V
∪ U [min (mA(u), mB(v))]}

 = {v / [min (max
V
∪ U(mA(u)), mB(v))]}

 = {v / [min (1, m
V
∪ B(v))]} (since A is normal)

5.5 Fuzzy Control

143

 = {v / m
V
∪ B(v)}

 =B.

5.5 Fuzzy Control

Control refers to the control of various physical, chemical, or other numeric
characteristics, such as temperature, electric current, flow of liquid or gas, motion of
machines, various business and financial quantities (e.g., flow of cash, inventory
control), and so forth. A control system can be abstracted as a box for which inputs
are flowing into it, and outputs are emerging from it. Parameters can be included as
parts of inputs or within the box, i.e., the control system.
 For example, consider a system that controls some kind of temperature
distribution by heat and possibly cooling sources. The inputs may be the current
temperature distribution and its time derivatives, and a parameter may be target
temperature distribution. The outputs can be the amounts of the heat and cooling
sources to be applied. The control problem in general is to develop a formula or
algorithm for mapping from the inputs and parameters to the outputs.
 Fuzzy control is a control technique based on fuzzy logic. Given input, typically
system measurements such as temperature, we are to determine output such as an
amount of the heat source to control the system. In fuzzy control, the rules, input,
and/or output may involve fuzziness, leading to the use of fuzzy logic.
 The basic idea of fuzzy control is to apply fuzzy inference to control problems. In
fuzzy control, the control box includes fuzzification, fuzzy inference using fuzzy
if-then rules, and defuzzification procedures. Fuzzy rules can include human
descriptive judgements, such as "if the temperature is moderately high and the
pressure is very low, then the output is medium." Although fuzzy control is based on
fuzzy inference, simple methods are used in considering computation time.

5.5.1 Fuzzy Control Basics

In a fuzzy control system, we have a set of fuzzy control rules in the format of "if x
= small, then z = big," or "if x = small and y = medium, then z = big." Here x and y are
the input variables and z is the output variable. Given specific values of x and y,
our task is to determine a value of z using applicable control rules and fuzzy
inference.

Commonly used fuzzy variables and their membership functions

We define fuzzy variables that can represent values of the input and output variables.
A commonly used set of seven fuzzy variables follows:

 5 Fuzzy Systems

 144

 NB = Negative Big
 NM = Negative Medium
 NS = Negative Small
 ZO = Zero
 PS = Positive Small
 PM = Positive Medium
 PB = Positive Big

Or, the two mediums, NM and PM, may be omitted, resulting in the following set of
five fuzzy variables. This smaller set of fuzzy variables is simpler, but it would result
less fine or delicate control. For simplicity, we will use this five fuzzy variable
version hereafter.

 NB = Negative Big
 NS = Negative Small
 ZO = Zero
 PS = Positive Small
 PB = Positive Big

 The next step is to define membership functions for these fuzzy variables.
Defining a membership function is up to us, and the selection of membership
functions affects the control performance. What membership function we choose
depends on many factors, such as the type of application, how much fine control is
required, how fast the control must be performed, and so on. A rule of thumb is that
simpler membership function causes lesser computation time but reduces fine control.

 There are two categories of membership functions. One is continuous and the
other discrete. The following, Fig. 5.14, shows an example of the continuous
membership function. In this example, each fuzzy variable's membership function
has a triangular shape (plus the zero membership function outside of the triangle, i.e.,
the bottom line segments). There are other common continuous membership
functions such as trapezoids (rather than triangles) and bell shapes.
 In Fig. 5.14, the membership function value or degree of variable PS is 1 when
normalized x = 0.5; PS is 0.5 when normalized x = 0.25 or 0.75; and PS is 0 when x
= 1 or ≤ 0. Mathematically, a triangular membership function m(x) can be represented
as:

m(x) =
()

max , 0 ,
a x b

a

− −⎡ ⎤
⎢ ⎥
⎣ ⎦

where a > 0 and b are constants. b determines the x value for the apex or the
symmetric point, and 2a represents the width of the triangle base. For example, in Fig.
5.14, for the membership function for variable NS, we choose a = 2 and b = - 2 for
not normalized, and a = 0.5 and b = - 0.5 for normalized.

5.5 Fuzzy Control

145

Fig. 5.14. Graphical representations of continuous triangular membership functions for five
fuzzy variables.

The following is an example of discrete membership functions.

Table representations of discrete membership functions for five fuzzy variables

x -4 -3 -2 -1 0 1 2 3 4
m(x):
NB 1 0.5 0 0 0 0 0 0 0
NS 0 0.5 1 0.5 0 0 0 0 0
ZO 0 0 0 0.5 1 0.5 0 0 0
PS 0 0 0 0 0 0.5 1 0.5 0
PB 0 0 0 0 0 0 0 0.5 1

Example.

Assume that acceleration of a space shuttle is between -4G and +4G (G represents the
gravitational acceleration). Using five fuzzy variables, the triangular membership
function is represented by Fig. 5.14. A negative acceleration of -1.5 G, that is, the
normalized value of -0.375, for example, is represented as, NS with the degree of
0.75, and ZO with the degree of 0.25 (and NB, PS, and PB with the degree of 0).

Typical fuzzy control setup

We will describe a typical fuzzy control setup in the following. At each time interval
our fuzzy control system receives specific values for two inputs, E and ∆E, and yields
one output, W:

E and ∆E → Fuzzy control system → W

That is, E and ∆E are our input variables, and W is our output variable. For example,
at some specific time, E may be 3 and ∆E may be 0, and then W may be determined
as -2.2. After a short time interval, the values of E and ∆E change, and a new value
of W is computed. This process continues over a certain time period until control has
been achieved.
 Suppose that T represents the value to be controlled by the system. If we are to

 5 Fuzzy Systems

 146

control temperature, T will be the temperature; to control speed, T will be the speed,
etc. Then T0 is the target T, and E is the difference between T and T0.

 E = T - T0: the general expression for temperature difference

Since T and E change step by step over time, we can define T and E at each time
period n as Tn and En, respectively.

 En = Tn - T0: the temperature difference at time period n

Then ∆E is defined as follows (∆E represents the time derivative of E at time period
n).

 ∆E = En - En-1: the changing rate of E at time period n

Just as E is the difference between the current and target values, rather than the
current control value itself, W is a deviation from the current output value. For
example, suppose that temperature is controlled by a heat source, and the amount of
heat at time period n is Zn; then

Zn+1 = Zn + W.

Note. In some books, E is defined as E = T0 - T, i.e., the sign will be reversed. Using
this definition, the sign of ∆E is also reversed: ∆E = En - En-1 = (T0 - Tn) - (T0 - Tn-1)
= -(Tn - Tn-1). In the fuzzy if-then table discussed below, the terms of "Negative" and
"Positive" for E and ∆E will be interchanged (e.g., replace NB with PB). The table
entries for W remain the same for this definition of E.

Fuzzy if-then rules that derive W from E and ΔE

We set up a table for fuzzy if-then rules that derive W from E and ΔE in terms of the
fuzzy variables. The following is such a table.

Fuzzy if-then rule table for (E, ΔE) → W

 ∆E
 W NB NS ZO PS PB
 ──
 NB PB ← (Rule 6)
 NS PS
 E ZO PB PS ZO NS NB
 PS ↑ NS ← (Rule 8)
 PB (Rule 1) NB ← (Rule 9)

This table represents nine rules corresponding to the nine entries in the table. For
example, "if E = ZO and ΔE = NB, then W = PB" may be called Rule 1. The remaining
four entries in the same horizontal line of the table may be called Rules 2, 3, 4 and 5.
The remaining four entries in the vertical line may be called Rules 6, 7, 8 and 9. That

5.5 Fuzzy Control

147

is,

 Rule 1: if E is ZO and ∆E is NB then W is PB,
 or

 Rule 2: if E is ZO and ∆E is NS then W is PS,
 or
 :
 :

 Rule 8: if E is PS and ∆E is ZO then W is NS,
 or

 Rule 9: if E is PB and ∆E is ZO then W is NB.

System response phases

System response in fuzzy control, i.e., the behavior of the value to be controlled with
respect to time, is shown in Fig. 5.15. The response is an oscillating (irregular) cycles
with decaying amplitude, where each cycle consists of four phases, I through IV. The
Phase I of Cycle 1, i.e., the beginning of control, is near point a1 in the figure, where
E has the most negative value and ∆E is near zero. Hence, Rule 6 in the if-then rule
table applies to the region around point a1. Around point b1, E is near zero and ∆E is
a large positive number. Hence, Rule 5 in the if-then rule table applies to this point.
Similarly, around point c1, E is large and positive and ∆E is near zero, so Rule 9
applies; around point d1, E is near zero and ∆E is most negative, and Rule 1 applies
to this point. After Phases I, II, III, and IV of Cycle 1, the four phases repeat for Cycle
2, with smaller amplitude. Hence, near point a2, E is small and negative, ∆E is near
zero, and Rule 7 applies.
 The following fuzzy if-then rule table shows some points in Fig. 5.15 and their
major corresponding rules. As we will see later in a case study, typically more than
one rule is applied to a point, which is a major feature of fuzzy systems in general.
Points a3, b3, c3, and so on will continue in the same fashion, forming a shrinking
spiral in the table. Whether a3 or any subsequent point converges as a major rule to
Rule 3, where E = ZO and ∆E = ZO, depends on how fast the amplitude decreases.
Perhaps a3 stays on Rule 7, the same rule as for a2, and b3 converges to Rule 3, E =
ZO and ∆E = ZO.

 5 Fuzzy Systems

 148

Fig. 5.15 System response in fuzzy control

 ∆E
 W NB NS ZO PS PB
 ───
 NB PB a1
 NS PS a2
 E ZO PB d1 PS d2 ZO NS b2 NB b1
 PS NS c2
 PB NB c1

 In the fuzzy if-then rule table, the nine entries shown, which represent the phases
of different cycles, are considered the major entries required to achieve the required
control. The empty entries of the table (such as E = NB and ∆E = NB) are considered
not important for several reasons. First, for fuzzy control as depicted in Fig. 5.15,
cases in which both E and ∆E take extreme values (e.g., E = NB and ∆E = NB; E =
PB and ∆E = NB) do not occur. That is, when one of E and ∆E takes an extreme value,
the other is near zero. Second, as we will see soon, this if-then rule table is used in
conjunction with membership functions like Fig. 5.14. Each value of a fuzzy variable
(e.g., ∆E = ZO) does not represent a single point, but instead covers a wide range (e.g.,
ZO covers x = -2 to 2) with varying degrees. That is, each rule in the table covers
wide ranges of E and ∆E. A third reason is, as we will see in the case study in the next
subsection, W is typically chosen as a deviation (a small additive term) from the
current system output, rather than the system output itself. For such W, the effect of
W is not as critical as the system output itself.
 These reasons allow us to have fewer rules to perform the required control, and
normally, simple assumptions are made for these empty entries. For example, assume
W = 0 (not W = ZO) for all these empty entries. When W represents a deviation from

5.5 Fuzzy Control

149

the current system output, W = 0 means to keep the current system output. In certain
applications, some of the empty entries are filled in, as for example: E = PS and ∆E
= NB then W = NS, E = PB and ∆E = NS then W = PS, E = PS and ∆E = NS then W
= ZO, etc.

A cookbook recipe to compute output, W, from two inputs, E and
∆E

Now with all this predetermined information, we can compute W for the given values
of E and ∆E.

1. Fuzzification.

Look at Fig. 5.14 and find which fuzzy variables (NB, etc.) apply to the given
specific value of E (x in the figure) and to what degree. Repeat the same for ∆E.

2. Fuzzy inference.

a) Look at the fuzzy if-then rule table above and find which rules apply for the
fuzzy variable combinations found for E and ∆E in Step 1. Let call these rule
numbers i and j (e.g., if Rules 8 and 9 are applicable, then i = 8 and j = 9).

b) Compute the weight (firing strength), αi, of each rule found in Substep (a) in

the form of
αi = min(mF1(E), mF2(ΔE)) = mF1(E) ∧ mF2(ΔE)

where F1 and F2 are the fuzzy variables found in Step 1, and ∧ takes the
minimum of the operand membership functions.

c) Find the membership function for W associated with each rule in the form of

mi(W) = αi ∧ mF3(W)

where F3 is the fuzzy variable found for W in the fuzzy if-then rule table, and
mF3(W) is the membership function corresponding to that fuzzy variable in Fig.
5.14 (let x be W).

Note that in these substeps, we employ the fuzzy implication formula in the
form of "if E and ΔE then W" = E × ΔE × W, taking the minimum of the
membership functions of these variables, E, ΔE, and W.

d) Compute the membership function for W, mT(W), in the following form:

mT(W) = max(mi(W), mj(W)) = mi(W) ∨ mj(W),

where ∨ takes the maximum of the operand membership function. Note that since
these rules are combined in the form of Rule i or Rule j, we take the max of these
membership functions.

 5 Fuzzy Systems

 150

3. Defuzzification.

The above mT(W) gives the fuzzy version of the solution, i.e., the answer for
output W as a (membership) function of W. (For example, an answer may be to
produce output W in the form of -4 to -1 with a degree of 0.5, and so on.) For
practical output, however, we need a specific single value, W0, as a system output
to perform the control. For this purpose, we compute the "mean" of W weighted
by mT(W) or the "center of gravity" of mT(W) as W0 as follows:

∫ W⋅ mT (W) dW

W0 = _______________________
∫ mT (W) dW

Here the ∫ symbol represents ordinary integration, rather than fuzzy union (note
"dW" at the end of the expression). This process of evaluating the center of
gravity is called a defuzzification procedure.

5.5.2 Case Study: Controlling Temperature with a Variable Heat
Source

In the following, we will illustrate the basic procedure of fuzzy control discussed
above by using a simple example. Our case study problem is described below.

Problem description

We have one type of system measurement, temperature, T. Let Tn be the temperature
at time period n, and T0 be the target temperature. From these values, we compute the
following:

E = T - T0: general expression for temperature difference
En = Tn - T0: temperature difference at time period n
∆E = En - En-1: changing rate of E at time period n

We also have one type of system output, the changing rate of heat source, W. W
represents a small difference from the current heat source. If the current heat source
is Zn, then Zn+1 = Zn + W.
 Our case study problem is as follows: given two input values, E = (the difference
between the current temperature and the target temperature) and ΔE = (the time
derivative of the difference), we are to determine output value, W = (the changing
rate of heat source).
 Suppose that (not normalized) E = 3 and ∆E = 0.

Step 1. Fuzzification.

By looking at the not normalized x = 3 in Fig. 5.14 (for E = 3), we find the
membership function of E is PB (Positive Big) with the degree = 0.5 and
PS with degree = 0.5. Similarly, the membership function of ∆E is ZO
with the degree = 1.0.

5.5 Fuzzy Control

151

Step 2. Fuzzy inference

a) Hence, in the fuzzy if-then rule table, two rules are applicable: Rules
8 and 9. (Rule 8: if E is PS and ∆E is ZO, then W is NS; Rule 9: if E
is PB and ∆E is ZO, then W is NB.)

b) For each of these two rules, we compute the weight (firing strength):

α8 = mPS(E) ∧ mZO(ΔE) = 0.5 ∧ 1.0 = 0.5
α9 = mPB(E) ∧ mZO(ΔE) = 0.5 ∧ 1.0 = 0.5

c) We find the membership function for W associated with each rule as:

m8(W) = α8 ∧ mNS(W) = 0.5 ∧ mNS(W) (see Fig. 5.16)
m9(W) = α9 ∧ mNB(W) = 0.5 ∧ mNB(W) (see Fig. 5.17)

d) The membership function for W, mT(W), is obtained as the max of the

above two intermediate membership functions, m8(W) and m9(W)
(see Fig. 5.18).

mT(W) = m8(W) ∨ m9(W).

Step 3. Diffuzification.

We compute the center of gravity of mT(W) as W0 (see Fig. 5.19). The
numerator of W0 = ∫ W⋅ mT (W) dW = ∫-4-1 W⋅(0.5) dW + ∫-10 W⋅(-W/2) dW
= (0.5)W2/2 | -4

-1 + (-0.5) W3/3 | -1
0 = -47/12. The denominator of W0 = ∫

mT (W) dW = ∫-4-1 (0.5) dW + ∫-10 (-W/2) dW = (0.5)W | -4-1 + (-0.5) W2/2 | -10
= 7/4. Hence, W0 = (-47/12)/(7/4) = -2.2381.

 Fig. 5.16 m8(W) = 0.5 ∧ mNS(W) Fig. 5.17 m9(W) = 0.5 ∧ mNB(W)

 5 Fuzzy Systems

 152

Fig. 5.18. the membership function for W, Fig. 5.19. Final output, W0, as the center of
 mT(W) = max(m8(W), m9(W)) gravity of mT(W)

Possible extensions of this simple case study are multiple system measurements
(rather than a single measurement of temperature) and/or outputs (rather than a single
output of W).

Programming considerations

Writing a short program for a simple problem such as the case study discussed here
is a good way to understand the basics of fuzzy control. Integrations may be carried
out by using simple formula. One such simple formula would be to add up narrow
rectangular areas, where each rectangle has width dW. Or, when the membership
functions for fuzzy variables are triangular as in our discussion or other linear form,
integration may be determined analytically by adding areas of trapezoids and
triangles.
 A simple assumption can be made on how the value of W0 may affect the system's
measurement to be controlled for simulation. For example, ∆T, the change in
temperature T, may be assumed to be proportional or a linear function of W0. Starting
with an initial T, at each time step, we would have a new value of T as old T + ∆T,
compute new values of E, ∆E, and W0. We may be able to see how temperature
converges to the target temperature - a simulation of fuzzy control.
 For commercial applications, the principles of fuzzy control discussed here may
not actually operate inside individual machines, since fuzzy control is too costly and
time consuming for realtime control. Instead, input to output mappings are
determined using fuzzy control at the factories, these mappings are recorded on a
computer chip, and the machines operate based on this information.

5.5.3 Extended Fuzzy if-then Rules Tables

Note on the four “corner regions” of fuzzy if-then rule tables

Up to this point, all the entries of the four corner regions of fuzzy if-then tables are
assumed 0 for simple implementations. For more fine-tuned control, these corner
regions can have nonzero values as in the following example.

5.5 Fuzzy Control

153

 ΔE

 W NB NM NS ZO PS PM PB
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 NB PB PM
 NM PM
 NS PS ZO NM
 E ZO PB PM PS ZO NS NM NB
 PS PM ZO NS
 PM NM
 PB NM NB

In this improved table, six nonzero entries are added in the two corner regions. Note
that the same entries (e.g., PM) appear along the diagonal lines. In this sub-section,
we discuss the significance of the four-corner regions.

1. For simple implementation discussed earlier, we assume W = 0 for all entries in

all the four corner regions (here we call the original table). The justifications are
as follows:

i) The regions correspond to less critical points in control process.
ii) The table with zero corner regions still covers a wide range (e. g., ZO =

-0.33 to 0.33). Since multiple rules are used, even if W = 0 for some rules,
W ≠ 0 for some other rules and final W ≠ 0.

iii) W is typically, e. g., a changing rate of a heat source, rather than heat source
itself. W = 0 means to keep the current heat source, and this works well for
many applications. Incidentally, if W represents heat source itself, we
cannot set W = 0; it probably means disastrous control.

2. An improved table over W = 0.

The literature (e.g., Lee, p. 413) suggests adding six entries (e.g., if E = NB and
 ΔE = PS then W = PM; other corner entries remain 0) for possible finer control
as shown in the above table (an improved table). This is based on considering
fine tuning in system response as explained below.

In the following, Points refer to the points in Fig. 5.20.

Point a: E = NB, ΔE = 0 → W = PB (original table).
Point b: E = NB, ΔE = PS. To accelerate temperature increase, we may set W

= PM instead of 0.
Point c: Typically, there is some time lag between fuzzy control and physical

target systems. The added W = PM at Point b may cause over-shooting.
 To correct this situation, we may start an early adjustment before Point
d by: E = NS, ΔE = PB → W = NM instead of 0.

Point d: E = ZO, ΔE = PB → W = NB (original table)

 5 Fuzzy Systems

 154

To d

c

b

t

 a

Fig. 5.20. System response points for finer fuzzy control.

The resulting typical system response may look as follows.

 Improved Original

Fig. 5.21. System response with improved fuzzy control.

3. Further extensions for even finer tuning. Fill in the four corner regions with

nonzero entries diagonally. For seven variables, a total of 7 × 7 = 49 entries:

 ΔE

 W NB NM NS ZO PS PM PB
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

NB PB PB PB PB PM PS ZO
NM PB PB PB PM PS ZO NS
NS PB PB PM PS ZO NS NM

 E ZO PB PM PS ZO NS NM NB
PS PM PS ZO NS NM NB NB
PM PS ZO NS NM NB NB NB
PB ZO NS NM NB NB NB NB

5.5 Fuzzy Control

155

For five fuzzy variables, 5 × 5 = 25 entries.

 ΔE
W NB NS ZO PS PB

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 NB PB PB PM PS ZO
 NS PB PB PS ZO NS

E ZO PB PS ZO NS NB
 PS PM ZO NS NB NB

 PB ZO NS NB NB NB

For example, for E = PB, ∆E = NB, PB and NB cancel out and W = ZO.

An extension of the case study for which both E and ∆E are
nonzero

Example. E = 3 and ∆E = -0.5, rather than E = 3 and ∆E = 0.

The basic principle is the same as discussed in the cookbook recipe, p. 149.

 Step 1. Each of E and ∆E are represented by two fuzzy variables: E is the same

as before, i. e., PB with 0.5 and PS with 0.5. ∆E is now ZO with 0.75 and
NS with 0.25.

 Step 2. (a) The fuzzy if-then rule table has to be extended to have additional
entries: (tentatively called Rules 10 and 11):

 Rule 10. if E = PS and ∆E = NS then W = ZO.
 Rule 11. if E = PB and ∆E = NS then W = NS.

 The rest of the algorithm is performed in the same way.

 (b) Compute the firing strengths, α8, α9, α10, α11.
(c) Find the membership function for W associated with each rule,

m8(W), . . ., m11(W).
 (d) Determine mT(W) by the max operations on m8(W), . . ., m11(W).

 Step3. Compute the center of gravity.

5.5.4 A Note on Fuzzy Control Expert Systems

There are many control problems in which rules are expressed in descriptive rather
than numeric expressions. For example, "if the speed is moderately fast, then slightly
reduce the fuel amount" is a descriptive expression, while "if the speed is 200
km/hour, then reduce the fuel amount by 6%" is a numeric expression. Many
real-world control rules are described in descriptive expressions, because this is the
way experts perform their operations. Numeric rules are not used for several reasons.

 5 Fuzzy Systems

 156

 For example, the number of rules required in numeric form may be large, the rules
may be so complex that some sort of approximations have to be used (e.g.,
linearization of nonlinear expressions), and so forth. Even if we have numeric rules,
obtaining numeric input can be either difficult or not economical. For these situations,
descriptive rules with either numeric or descriptive input can be used.
 For example, consider parallel parking a car. Solving this problem by, say, using
a set of differential equations and measuring the distance, angular velocity of the
steering, etc., is difficult. Instead, we may have been using a sort of a set of fuzzy
rules, such as "if the distance to the next car is PS (Positive Small), then keep the
same speed and rotate the steering PS."
 As we have seen in this chapter, fuzzy control can easily incorporate descriptive
rules in the system. For example, "if the speed is moderately fast (PS) and the angle
is sharp to the left (NM: Negative Medium), then slightly reduce (NS) the fuel
amount" can be a fuzzy rule described by an experienced expert. Membership
functions can be defined for these fuzzy variables, fuzzy inference can be performed,
and output can be computed. In a sense, this type of fuzzy control quantifies
descriptive rules for numeric computation. This is the basic idea of implementing
human operators' descriptive knowledge in the form of fuzzy control. Fuzzy control
based on this idea has been most successful in terms of real-world applications
among fuzzy systems, and the number is likely to increase in the future.

5.6 Hybrid Systems

One of the most active recent trends is the use of various forms of hybrid systems
combining fuzzy logic and other areas such as neural networks and genetic
algorithms.

Fuzzy - neural network hybrid systems

Much current research suggests using fuzzy logic and neural networks as
complementary techniques. The fundamental concept of such hybrid systems is to
complement each other's weaknesses, thus creating new problem-solving approaches.
 For example, there are no capabilities of machine learning in fuzzy systems. Nor do
fuzzy systems have capabilities of memory or pattern recognition in the way neural
networks do. The backpropagation neural network model, for instance, can
memorize and recognize a potentially huge number of input patterns by storing much
less information about weights. (For example, if there are 100 input units, and each
unit can have either 0 or 1, then 2100 ≈ 1030 different input patterns are possible.)
Fuzzy systems with neural networks may add such capabilities, and in fact, recent
commercial applications of neural networks in Japan are mostly tied to fuzzy control.
 The current stage of such neural network systems is relatively simple for real-world
applications, however, and some people say that their functions are mostly "tuning"
rather than "learning." Several applications have shown the advantages of neural
networks in mapping the non-linear behavior of systems to predict future states,
monitor the system behavior and anticipate failures. (For more, see Jang, et.al.,
1997.)

5.7 Fundamental Issues

157

Fuzzy - genetic algorithm hybrid systems

Applications of genetic algorithms combined with fuzzy control are being
investigated not only at the academic level but also at the commercial level. Genetic
algorithms are particularly well-suited for tuning the membership functions in terms
of placing them in the universe of discourse. Properly configured genetic
algorithm/fuzzy architecture searches the complete universe of discourse and finds
adequate solutions according to the fitness function.

Fuzzy - PID hybrid systems

For certain applications, fuzzy and PID systems are employed together as a hybrid
controller. A PID controller can be used for approximate and fast control, while a
fuzzy system either tunes the PID gains or schedules the most appropriate PID
controller for better performance.

5.7 Fundamental Issues

Problems and limitations of fuzzy systems

1) Stability
Stability is a major issue for fuzzy control. As described below, there is no
theoretical guarantee that a general fuzzy system will not become chaotic and
stays stable, although such a possibility appears to be extremely slim from the
extensive experience.

2) Lack of learning capability
As mentioned before, fuzzy systems lack capabilities of machine learning, and
neural network-like memory and pattern recognition. This is why hybrid systems,
particularly neuro-fuzzy systems, are becoming popular for certain applications.

3) Determining or tuning good membership functions and fuzzy rules is not always
easy. Even after extensive testing, it is difficult to say how many membership
functions are really required. Questions like why a particular fuzzy expert system
needs so many rules, or when a developer can stop adding more rules are not
easily answered.

4) There exists a general misconception of the term "fuzzy" as imprecise or

imperfect. Many professionals think of fuzzy logic as "magical" without firm
mathematical foundation.

5) Verification and validation of a fuzzy expert system generally requires extensive

testing with hardware in the loop. Such a luxury may not be affordable by all
developers.

 5 Fuzzy Systems

 158

Stability, controllability and observability

The notion of stability is well-established in the classical control theory, and for a
given linear system, several criteria of stability can be applied and necessary
computations can be performed to obtain results. Similarly, the notion of
controllability and observability is firmly established in modern state space theory.
Using a linearized set of equations, proper parameters can be computed to show that
the system behavior meets these criteria well. As a result of the complexity of
mathematical analysis for fuzzy logic, stability theory requires further study, and
issues such as controllability and observability have to be defined for fuzzy control
systems.

Fuzzy versus probability theories
The continuous rather than crisp transition characteristics between 0 and 1 in fuzzy
sets and logic is similar to probability theory. Additionally, the technique of deriving
membership functions using the relative frequency distribution confuses developers
and creates an impression that fuzzy logic is another form of probability theory. This
sometimes raises debates about how fuzzy theory differs from probability.
 The most fundamental difference is in their basic ideas. In probability theory, we
deal with chance of occurrence, e.g., getting the head by flipping a coin, winning a
lottery, being involved in a car accident, and so forth. The membership degree of
fuzzy set theory is not probability, but plausibility. For example, suppose that
someone's membership degree in a set of young people is 0.7. This does not mean
that this person is young 70% of time and old the remaining 30% of the time, which
reflects the probability. Rather, it means that this person is fairly young to the degree
of 70% right now all the time. In other words, the fundamental difference between
fuzzy and probability theories is that the former deals with deterministic plausibility,
while the latter deals with the likelihood of nondeterministic, stochastic events.
 From a practical point of view, fuzzy systems have led to numerous new real
world applications, which would not have been realized by using probability theory.

5.8 Additional Remarks

A bit of history

Fuzzy set theory was introduced in 1965 by Lotfi A. Zadeh at the University of
California at Berkeley. In 1974, E.H. Mamdani et. al at the University of London,
demonstrated applications of fuzzy set theory to control problems. But the concepts
were known in a relatively small research community until Hitachi of Japan used
fuzzy control for the new Sendai Subway in 1986. The performance improvement
was significant; it reduced the stop-gap distance by 2.5 times, doubled the comfort
index, and saved 10% in power consumption. The number of practical fuzzy
application systems has exploded since then. World-wide industrial and commercial
applications appear likely to increase significantly in the near future. Academic

5.8 Additional Remarks

159

interests in fuzzy theory has also been growing recently, as indicated by the first
IEEE Transactions on Fuzzy Systems in February 1993.

Significance of fuzzy control

As stated at the beginning of this chapter, fuzzy logic allows decision making under
fuzzy information and rules. It also allows us to represent descriptive or qualitative
expressions. For control problems that involve the fuzziness and descriptive
expressions, fuzzy control is typically simpler, faster, less costly and more robust
than traditional mathematical approaches. Fig. 5.22 shows the approximate position
for which fuzzy control is most useful. In many systems (e.g., "humanistic" systems),
using classical control makes precision either impossible or inappropriate. Here are
some comparisons for typical situations.

Typical classic versus fuzzy control systems

 Classic Control Fuzzy Control
───
Input, output, and Numeric Numeric+ descriptive
intermediate values

Algorithm Single, e.g., Multiple (Front-end if-then rules
 a differential equation may select algorithms)

Robustness Weak Good

Fig. 5.22. Approximate domain for which fuzzy control best fits.

 5 Fuzzy Systems

 160

Generic categories of fuzzy system applications

The following is a list of different categories and their fuzzy system application types.

Category Application Area Examples
──
Control Control is the most widely applied category today. The

majority of the industrial applications in the next table are
in this category.

Pattern recognition Image (e.g., optical character recognition) audio, signal
processing.

Quantitative analysis Operations research, statistics, management

Inference Expert systems for diagnosis, planning, and prediction;
natural language processing; intelligent interfaces;
intelligent robots; software engineering.

Information retrieval Databases.

A partial list of application areas of fuzzy systems

The following is a list of selected application areas and examples.

Field Applications
──
Transportation Subways, helicopters, elevators, traffic control, highway

tunnel-air control

Automobiles Transmissions, cruise control, engines, brakes

Consumer electronics Washing machines, driers, refrigerators, vacuum cleaners,
rice cookers, televisions, VCRs, air conditioners,
kerosene fan heaters, microwave ovens, shower systems,
video cameras

Robotics

Computers

Other industries Steel, chemical, power generation, construction, nuclear,
aerospace

Engineering Electrical, mechanical, civil, environmental, geophysics

Medicine

Management Credit evaluation, damage/risk assessment, stock picking,
marketing analysis, production management, scheduling,
decision support systems

Further Reading

161

Further Reading

If I had to, I would choose Terano's book for general introduction to fuzzy systems
and applications. Lee's article is a clear tutorial on fuzzy control. Zadeh's 1965 piece
is the seminal article on fuzzy sets and further derivatives of many areas of fuzzy
systems.

J.-S.R. Jang, C.T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing,
Prentice-Hall, Upper Saddle River, NJ, 1997.

Y. Jin, Advanced Fuzzy Systems Design and Applications, Physica-Verlag, 2003.

C.C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Parts I and II."
 IEEE Transactions on Systems, Man and Cybernetics, 20, 2 (March/April, 1990)
404-435.

T. Munakata and Y. Jani, "Fuzzy Systems: An Overview," Communications of the
ACM, Vol. 37, No. 3 (March, 1994), 69-76.

T. Terano, K. Asai, and M. Sugeno, Fuzzy Systems Theory and Its Applications,
Academic Press, San Diego, 1992.

P. Witold and G. Fernando, An Introduction to Fuzzy Sets: Analysis and Design, MIT
Press, 1998.

L.A. Zadeh, "Fuzzy Set," Information and Control, Vol. 8, 1965, 338-353.

L.A. Zadeh, "Fuzzy Algorithms," Information and Control, Vol. 12, 1968, 94-102.

L.A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and
Decision-Making Approach," IEEE Transactions on Systems, Man and Cybernetics,
Vol. SME-3, No. 1, January, 1973, 28-44.

H. -J Zimmermann and Hans-Jurgen Zimmerman, Fuzzy Set Theory - and Its
Applications, 4th Ed., Springer, 2005.

Journals

IEEE Transactions on Fuzzy Systems.

Fuzzy Sets and Systems, Elsevier (sponsored by the IFSA, International Fuzzy
Systems Association).

International Journal of Approximate Reasoning, Elsevier (affiliated with the
NAFIPS, North American Fuzzy Information Processing Society).

Many other journals, magazines and conference proceedings in AI and its
applications carry articles in fuzzy systems.

6 Rough Sets

6.1 Introduction

Rough set theory is a relatively new mathematical and AI technique introduced by
Zdzislaw Pawlak, Warsaw University of Technology, in the early 1980s. This area
has remained unknown to most of the computing community until recently. Rough
set theory is particularly useful for discovering relationships in data. This process is
commonly called knowledge discovery or data mining. It is also suited to reasoning
about imprecise or incomplete data.
 Rough sets, meaning approximation sets, are built on ordinary sets. We recall that
fuzzy sets are a generalization of ordinary sets. In this regard, rough sets and fuzzy
sets have a common ground. However, their ways of deviating from ordinary sets are
different, and their primary application objectives are also different. These two
approaches can be used in their own domains independently, or they can be
complementary. Briefly, fuzzy sets allow partial membership to deal with gradual
changes or uncertainties. Rough sets, on the other hand, allow multiple memberships
to deal with indiscernibility.
 Rough set theory is commonly compared to other techniques such as statistical
analysis, particularly discriminant analysis, and machine learning in classical AI.
While there are no mathematical proofs to show which technique is most suitable for
what types of problems, it appears that each technique has specific strengths for
problems of certain kinds. For example, rough sets might do a better job than
statistical analysis when the underlying data distribution deviates significantly from
a normal distribution, since there is no such distribution assumption in rough sets.
Also, perhaps rough sets could be better than statistical analysis when the sample size
is small, since any distribution can hardly be defined in such a case. Machine learning
can broadly be defined as the process in which computers acquire their knowledge
and improve their skills by themselves. Under this broad definition, the data mining
aspect of rough sets can be regarded as a technique of machine learning. Rough sets,
however, employ an approach different from those found in classical machine
learning.
 A major feature of rough set theory in terms of practical applications is the
classification of empirical data and subsequent decision making. The primary
application domains of rough sets have been in symbolic approaches such as data and

6.1 Introduction

163

decision analysis, databases, knowledge based systems, and machine learning. There
are also recent interests in rough control, applications of rough set theory to control
problems. Practical application areas include: engineering disciplines such as civil,
electrical, chemical, mechanical and transportation; pharmacology; medicine; and
operations research. Specific application examples include: cement kiln, aircraft
pilot performance evaluation, hydrology, and switching circuits.

The basic idea of rough sets

Raw data is often very detailed, yet disorganized, incomplete and imprecise. To
understand and use the data, we derive underlying knowledge about the data, i.e.,
what it represents. Such knowledge can be represented in many forms. Rules are the
most common form of representing knowledge. Other forms include equations and
algorithms.
 In many situations, we may not need detailed data to derive conclusions for actions.
Instead, "coarse" or "rough" data or data sets may be sufficient. In certain situations,
such approximate rough data may be even better than a detailed one. Too much detail
is often confusing. Rough data can be more efficient, effective and robust, and may
uncover the underlying characteristics.
 The rough sets methodology gives a new technique for reasoning from imprecise
and ambiguous data. The technique can efficiently perform knowledge acquisition
and machine learning. It performs these by lowering the degree of precision in data,
based on a rigorous mathematical theory. By selecting the right roughness or
precision of data, we will find the underlying characteristics of data. In this chapter
we will give a brief introduction to rough set theory. More short introductions will be
found in Pawlak 1988 and 1995. A thorough treatment of the theory, especially its
theoretical foundation, is discussed in Pawlak 1991.

List of selected symbols in this chapter

Symbol Page Meaning
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
U × V 165 The cartesian product of two sets, U and V.

R* 167, 169 The partition induced by an equivalence relation R:
R* = {X1, X2,, Xn}, where Xi is an equivalence
class of R. Xi is also called an elementary set of an
approximation space S = (U, R).

R*1 ⋅ R*2 167 The product of two partitions, R*1 and R*2, is the
partition induced by R1 ∩ R2.

S = (U, R) 171 An approximation space, where U is a finite set of
objects and R ⊆ U × U is an equivalence relation on
U. If u, v ∈ U and (u, v) ∈ R, we say that u and v are
indistinguishable in S. R is called an indiscernibility
relation.

 6 Rough Sets

164

Symbol Page Meaning

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
S(X) 171 The lower approximation of X in S = ∪Xi⊆X Xi

S (X) 171 The upper approximation of X in S = ∪Xi∩X≠∅ Xi

POSS(X) 172 The positive region of X in S = S(X)
SBNDS(X) 172 The boundary region of X in S = (X) - S(X)

NEGS(X) 172 The negative region of X in S = U - S (X)

a 174 The confidence factor

K 176 A knowledge representation system, where:
K = (U, C, D, V, ρ), U is a set of objects; C is a set of
condition attributes; D is a set of action (or decision)
attributes; V = ∪a∈F Va, and Va is the domain of
attribute a ∈ F, where F = C ∪ D; ρ: U × F → V for
every u ∈U and a ∈ F is an information function. ρ
can also be represented as: ρu: F → V by ρu(a) = ρ(u,
a) for every u ∈ U and a ∈ F.

G 180 An equivalence relation defined on U for any subset
G of C or D, such that (ui, uj) ∈G if and only if ρ(ui,
g) = ρ(uj, g) for every g ∈ G.

POSS (B*) 183 The positive region of partition B* in S = ∪Yj∈B* S
(Yj) = ∪Yj∈B* [∪Xi⊆Yj Xi].

BNDS (B*) 183 Boundary region = ∪Yj∈B* (S (Yj) - S(Yj)) = ∪Yj∈B*
[∪Xi∩Yj≠∅ Xi - ∪Xi⊆Yj Xi]

NEGS (B*) 183 Negative region = U - ∪Yj∈B* (S (Yj)) = U - [∪Xi∩Yj≠∅
Xi].

γA (B) 184 The dependency of B on A = ⏐ POSS (B*) ⏐ ⁄ ⏐ U ⏐,
where ⏐ ⏐ denotes the cardinality, and A ⊆ C, the set
of conditional attributes and B ⊆ D, the set of
decision attributes

A →γ B 184 The dependency of B on A, where A, B and γ as
defined above

βA (B) 185 The discriminant index of B on A = ⏐ POSS (B*) ∪
NEGS (B*) ⏐ ⁄ ⏐ U ⏐

σA (B) 185 The significance of B on A, defined as σA (B) = γC (B)
- γC-A (B)

6.2 Review of Ordinary Sets and Relations

165

Symbol Page Meaning
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Ĉ 186 A reduct or relative reduct of C. (A subset B of C is

independent if there is no other subset B' of C which
is B' ⊂ B and 'B = B . B is a reduct of C if B is a
maximal independent subset. This is extended to a
relative reduct by considering subset B to be an
independent set with respect to D, where there is no
other subset B' that satisfy POSB' (D*) = POSB (D*).)

RED(C) 186 The collection of all reducts of C

REDD(C) 186 The collection of all relative reducts of C with D

CORE(C) 187 Core of C = ∩ B∈RED(C)B
CORED(C) 188 Relative core of C = ∩ B∈REDD(C)B

6.2 Review of Ordinary Sets and Relations

For the convenience of the reader, we will briefly review some basics on sets and
relations which will be used in this chapter. A review on the topics with a different
focus is given in Subsection 5.3.1. These topics are typically covered in college
discrete mathematics courses and a reader who is familiar with these materials may
skip this section. (A reader who needs more details may see, e.g., C.L. Liu, Elements
of Discrete Mathematics, 2nd Ed., McGraw-Hill, 1985, or similar discrete
mathematics books.)
 Given two sets, U and V, we define the cartesian product = U × V as U × V = {(u,
v) | u ∈ U, v ∈ V}, where (u, v) represents an ordered pair. That is, U × V is the set of
all such ordered pair elements where u is chosen for every element of U and v is
chosen for every element of V. For example, suppose that U is the set of neckties a
man has: U = {red-tie, blue-tie}, and V is the set of shirts he owns: V = {white-shirt,
grey-shirt, pink-shirt}. Let us call them red, blue, white, grey and pink for simplicity.
 U × V in this example then is {(red, white), (red, grey), (red, pink), (blue, white),
(blue, grey), (blue, pink)}. In general, if U has m elements and V has n elements, then
U × V has m × n elements. A binary relation, or simply relation, R from U to V is
a subset of U × V. In the above example, {(red, white), (red, grey), (blue, white),
(blue, pink)} is a binary relation. Fig. 6.1 shows these concepts. Especially, if U =
V, the cartesian product becomes U × U. A binary relation is a subset of U × U and is
said to be a relation on U (Fig. 6.2).
 We can define various kinds of relations on U when they satisfy specific
characteristics. In particular, R is an equivalence relation, if
(1) reflexive, i.e., (u, u) for every u ∈ U.
(2) symmetric, i.e., (u, v) implies (v, u) for every u, v ∈ U.
(3) transitive, i.e., (u, v) and (v, w) imply (u, w) for every u, v, w ∈ U.

 6 Rough Sets

166

Fig. 6.1. The cartesian product and a binary relation defined on two sets.

Fig. 6.2. The cartesian product and a binary relation defined on one set.

Example 1.

Let NY = New York, LA = Los Angeles, SF = San Francisco, MO = Montreal, TO
= Toronto, MC = Mexico City, and U = {NY, LA, SF, MO, TO, MC}. Then,

R ={(u, v)│ u and v are in the same country} = {(NY, NY), (LA, LA), (SF, SF), (MO,
MO), (TO, TO), (MC, MC), (NY, LA), (LA, NY), (NY, SF), (SF, NY), (LA, SF),
(SF, LA), (MO, TO), (TO, MO)} is an equivalence relation.

Example 2.

 U = a group of people.
 R1 = {(u, v)│ u and v have the same last name} is an equivalence relation.
 R2 = {(u, v)⏐ u and v have the same birthday} is an equivalence relation.
 R3 = {(u, v)⏐ u and v have the same sex} is an equivalence relation.
 R4 = R1 ∩ R2 = {(u, v)│ u and v have the same last name and the same

birthday} is an equivalence relation.
 R5 = R1 ∩ R2 ∩ R3 = {(u, v)│ u and v have the same last name, the same

birthday, and the same sex} is an equivalence relation.

Example 3.

U = {a, b, c, d, e, f, g}, R = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (a, b), (b,

6.3 Information Tables and Attributes

167

a), (c, d), (d, c), (e, f), (f, e), (e, g), (g, e), (f, g), (g, f)} is an equivalence relation. As
in case for any mathematical treatment, such representation can be an abstract form
of specific cases such as Examples 1 and 2. Fig. 6.3(a) is a diagram representation
of this relation.

 Generally, a partition of a set U is a set of nonempty subsets of U, {X1, X2,..., Xk},
where X1 ∪ X2 ∪...∪ Xk = U and Xi ∩ Xj = ∅ for i ≠ j. i.e., a partition divides a set
into a collection of disjoint subsets. These subsets are called blocks of the partition.
In particular, when we have an equivalence relation R on U, we can partition U so
that every two elements in each subset are related and any two elements in different
subsets are unrelated. We say the partition is induced by the equivalence relation R,
and denote the partition as R*. The subsets are called the equivalence classes. Fig.
6.3(a) is an example of an equivalence relation, and Fig. 6.3(b) is the partition
induced by the equivalence relation. Sets X1, X2, and X3 are equivalent classes.
 Let R1 and R2 be two equivalence relations on U, and R*1 and R*2 be the
corresponding partitions induced by R1 and R2. The product of two partitions, R*1
and R*2, denoted R*1 ⋅ R*2 is defined as the partition induced by R1 ∩ R2. In other
words, in the partition R*1 ⋅ R*2, two elements a and b are in the same block
(equivalent class) if a and b are in the same block of R*1 and also in the same block
of R*2. In Example 2, in the partition induced by R4 = R1 ∩ R2, two persons will be
in the same block if they have the same last name and the same birthday.

 (a) (b)

Fig. 6.3 (a) An equivalence relation. (b) The partition induced by the equivalence relation.

6.3 Information Tables and Attributes

Rough set theory deals with data expressed in two-dimensional or matrix form tables,
called information tables. In this section, we will discuss some terminology
associated with information tables.

 6 Rough Sets

168

Information tables

For rough set theory, the input information is given in the form of a two-dimensional
table (i.e., matrix), called an information table (or decision table). The following is
a simple example of an information table.

Example 4.

 Table 1. Symptoms and heart problems of patients

 Universe Condition Attributes Decision Attribute
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Person Temperature Blood Pressure Heart Problem
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Adams normal low no
 Brown normal low no
 Carter normal medium yes
 Davis high medium no
 Evans high high yes
 Ford high high yes

As we see in this example, the columns of an information table are divided into three
sections; the universe U, condition attributes (or simply attributes), and decision
attributes (or simply decisions). The universe is the set of elements under
consideration as in ordinary sets. In the above example, the universe contains 6
patients. We can have any number of condition attributes; in this example, we have
two, Temperature and Blood Pressure. Similarly, we can have any number of
decision attributes, although one is all that is required. In the above example, we have
one decision attribute, Heart Problem. If we want, we can add more, as for example,
Stroke Problem, Diabetes Problem, and so on. Rows of an information table are
called entities (objects, or sometimes examples). The entities can be labeled by the
elements of the universe as, for example, Adams, etc. Each element (patient in the
above table) is characterized by its condition and decision attribute values.
 The previous table is simple for an illustration purpose. For practical applications,
the table size would be much larger. For example, there may be 10,000 patients,
twenty condition attributes, and the range of each attribute may be much higher than
simply "normal" and "high." Also, the application domains can be in many other
areas such as analysis of consumer and industrial products, process control, and so on.
Given input in this form, we would like to derive various conclusions as our output.
Possible types of conclusions include: how the decision attributes depend on the
condition attributes, are there any condition attributes that are redundant, i.e., can be
eliminated without affecting the decision making, and derivation of underlying rules
governing the relationship from the condition to decision attributes.

 In the above example, let Adams = a, Brown = b, Carter = c, Davis = d, Evans =
e, and Ford = f, for simplicity. Then the universe U is {a, b, c, d, e, f}. Equivalence
relations can be defined by the condition and decision attributes, as for example,

6.3 Information Tables and Attributes

169

 R1 = {(u, v)│ u and v have the same Temperature}
 R2 = {(u, v)⏐ u and v have the same Blood Pressure}
 R3 = {(u, v)⏐ u and v have the same Heart Problem}
 R4 = R1 ∩ R2 = {(u, v)│ u and v have the same Temperature and Blood Pressure }.

The universe can then be partitioned by these equivalence relations. For example,
R4*, the partition induced by the equivalence relation R4 = R1 ∩ R2 = {(u, v)│ u and
v have the same Temperature and Blood Pressure}, is R4* = R1* ⋅ R2* = {X1, X2, X3,
X4}, where X1 = {a, b}, X2 = {c}, X3 = {d}, X4 = {e, f}. Sets X1, X2, X3, and X4 are
called the equivalence classes.

Concepts

So far we have focused our attention primarily on condition attributes. For decision
attributes, we can define equivalence relations and determine the partitions in the
same way as for condition attributes. For example, we can define the following
equivalence relation.

R3 = {(u, v)⏐ u and v have the same Heart Problem}

The partition induced by this relation is:

R3* = {Y1, Y2}, where Y1 = {a, b, d} and Y2 = {c, e, f}.

In general, such sets in a partition are called concepts (Y1 and Y2 in the above
example). The concept Y1 corresponds to the set of all patients with no heart problem,
and Y2 with heart problem.
 In rough set theory, we are interested in finding mappings from the partitions
induced by the condition attributes to the partitions induced by decision attributes.

Rule induction

We saw that R4*, the partition induced by the equivalence relation R4 = R1 ∩ R2 = {(u,
v)│ u and v have the same Temperature and Blood Pressure}, is:

 R4* = {X1, X2, X3, X4}, where X1 = {a, b}, X2 = {c}, X3 = {d}, X4 = {e, f}.

In the above, we had R3*, the partition induced by R3 = {(u, v)⏐ u and v have the same
Heart Problem} as:

R3* = {Y1, Y2}, where Y1 = {a, b, d} and Y2 = {c, e, f}.

From these, we can derive rules as follows:

 if X1 = {a, b}, then Y1 = {a, b, d}.
 if X2 = {c}, then Y2 = {c, e, f}.
 if X3 = {d}, then Y1 = {a, b, d}.
 if X4 = {e, f}, then Y2 = {c, e, f}.
In words,

 6 Rough Sets

170

 if Temperature is normal and Blood Pressure is low, then no Heart Problem.
 if Temperature is normal and Blood Pressure is medium, then yes Heart Problem.
 if Temperature is high and Blood Pressure is medium, then no Heart Problem.
 if Temperature is high and Blood Pressure is high, then yes Heart Problem.

Or, these rules can be simplified as follows:

 if Blood Pressure is low, then no Heart Problem.
 if Temperature is normal and Blood Pressure is medium, then yes Heart Problem.
 if Temperature is high and Blood Pressure is medium, then no Heart Problem.
 if Blood Pressure is high, then yes Heart Problem.

6.4 Approximation Spaces

In the previous Table 1, information processing is straightforward, since each
elementary set (equivalence class) in the partition induced by the two condition
attributes maps to an elementary set (a concept) in the partition induced by the
decision attribute. In general, this may not be the case. That is, elements in an
elementary set may map to different concepts. Dealing with such information tables
is the core of rough set theory, and we will discuss some basics of these topics in this
section.

Inconsistent information tables

Now consider Table 2, where a patient Gill is added to Table 1. Previously based on
Table 1, we had a rule: "if Temperature is high and Blood Pressure is high, then yes
Heart Problem." With the addition of Gill, this rule is no longer true. Such a table is
called inconsistent. That is, an inconsistent information table contains entities whose
condition attribute values are the same, but lead to different concepts.

 TABLE 2. (Addition of a patient to Table 1)

 Universe Condition Attributes Decision Attribute
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Person Temperature Blood Pressure Heart Problem
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Adams normal low no
 Brown normal low no
 Carter normal medium yes
 Davis high medium no
 Evans high high yes
 Ford high high yes
 Gill high high no

6.4 Approximation Spaces

171

 To deal with inconsistent tables, we introduce various terminology which is
discussed in the following.

Approximation spaces and lower and upper approximations

As their name implies, rough sets are sets which cannot be clearly ascertained or
defined. However, rough (approximate) sets can be constructed. We will define
approximation spaces which lead to the concept of rough sets.
 Let U be a finite set of objects and R ⊆ U × U be an equivalence relation on U.
Then, S = (U, R) is called an approximation space. If u, v ∈ U and (u, v) ∈ R, we say
that u and v are indistinguishable in S. R is called an indiscernibility relation.
Indiscernibility relations are the main concept of rough sets. For example, in Table
2 above, suppose R = R2 = {(u, v)⏐ u and v have the same Blood Pressure}. Then R2
is a indiscernibility relation. Patient a (Adams) and b (Brown), for example, are
indiscernible using this equivalence relation; so are elements c and d; so are e, f, and
g. We can define other indiscernibility relations by choosing other equivalence
relations, such as R4 = R1 ∩ R2 = {(u, v)│ u and v have the same Temperature and the
same Blood Pressure}.
 Let R* = {X1, X2,, Xn} denote the partition induced by R, where Xi is an
equivalence class of R. Xi is also called an elementary set of S. Any finite union of
elementary sets is called a definable set.
 Let X be any subset of U. Then we define the following:

S(X) = ∪Xi⊆X Xi the lower approximation of X in S

S (X) = ∪Xi∩X≠∅ Xi the upper approximation of X in S

In words, S(X) is the union of all the elementary sets of S, where each elementary set
is totally included (i.e., a subset) in X. S (X) is the union of all the elementary sets of
S, where each elementary set contains at least one element in X. In the following,
when the meaning is clear from the context we sometimes write S(X) as S and S (X)
as S for simplicity.

Example 5.

In Table 2, let us choose R2, an equivalence relation for the same Blood Pressure, as
our relation R. Then S = (U, R2) is the approximation space. The partition induced by
R2 is R2* = {X1, X2, X3}, where X1 = {a, b}, X2 = {c, d}, and X3 = {e, f, g} are the
equivalence classes or elementary sets of S (Fig. 6.4a). X1 ∪ X2 = {a, b, c, d} is a
definable set of S. Suppose that we have a new concept (for example, Stroke Problem
= no) for which X = {b, c, d}. Then S(X) = X2 and S (X) = X1 ∪ X2 (Fig. 6.4b).

 6 Rough Sets

172

Fig. 6.4 (a) The partition induced by the equivalence relation of the same Blood Pressure. (b)
The lower and upper approximation of X = {b, c, d}.

Three distinct regions in an approximation space: positive,
boundary and negative

Using the lower and upper approximations discussed above, we can characterize the
approximation space S = (U, R) in terms of the concept X with three distinct regions
defined as follows:

1. the positive region: POSS(X) = S(X)

S2. the boundary region: BNDS(X) = (X) - S(X)
3. the negative region: NEGS(X) = U - S (X)

The lower and upper approximations, and the positive, boundary, and negative
regions are the most important notions in rough set theory.
 In Table 2, suppose X = {b, c, d}, then the three distinct regions are (Fig. 6.5):

 POSS(X) = S(X) = X2

 BNDS(X) = S (X) - S(X) = X1 ∪ X2 - X2 = X1

 NEGS(X) = U - S (X) = X3

6.4 Approximation Spaces

173

Fig. 6.5. The positive, boundary, and negative regions of X = {b, c, d}.

In general, a diagram interpretation of the three regions are given in the following Fig.
6.6. Suppose that the top three figures are given:

Then we have the following for the boundary and negative regions:

 Fig. 6.6.A diagram interpretation of the lower and upper approximations and the positive,
boundary, and negative regions.

 6 Rough Sets 174

Rule induction on an approximation space

For any concept, rules induced from its positive region (i.e., lower approximation)
are called certain, since they are certainly valid. On the other hand, for any concept,
rules induced from the boundary region of the concept are called uncertain. For an
uncertain rule, we can define the confidence factor α. Let Xi be an elementary set in
the boundary region and Yj be a concept. The confidence factor for a rule derived
from Xi and Yj is:

α =
ji

i

P X Y
X
∩

In words, the confidence factor is (the number of elements that are in the elementary
set under consideration and that satisfy the concept for the rule) / (the total number
of elements in the elementary set under consideration).

Example 6.

In Table 2, certain rules can be:

 if X1 = {a, b}, then Y1 = {a, b, d, g}.
 if X2 = {c}, then Y2 = {c, e, f}.
 if X3 = {d}, then Y1 = {a, b, d, g}.

In words,

 if Temperature is normal and Blood Pressure is low, then no Heart Problem.
 if Temperature is normal and Blood Pressure is medium, then yes Heart Problem.
 if Temperature is high and Blood Pressure is medium, then no Heart Problem.

Uncertain rules and their confidence factors can be:

 if X4 = {e, f, g}, then Y1 = {a, b, d, g} with α = |{g}| / |X4| = 1/3 = 0.33.
 if X4 = {e, f, g}, then Y2 = {c, e, f} with α = |{e, f}| / |X4| = 2/3 = 0.67.

In words,

 if Temperature is high and Blood Pressure is high, then no Heart Problem with the

confidence factor = 0.33.
 if Temperature is high and Blood Pressure is high, then yes Heart Problem with the

confidence factor = 0.67.

Definability and rough sets

As a special case, if BND = ∅, i.e., if S(X) = S (X), X is a definable set in S (for
example, the two concepts in Table 1 are definable sets). Otherwise, if BND ≠ ∅, or

6.4 Approximation Spaces

175

equivalently if S(X) ≠ S (X), then X is said to be undefinable or a rough set. (The two
concepts in Table 2, representing "no" and "yes" Heart Problem are rough sets.)
Although there is some ambiguity on what exactly is a "rough set" in the literature,
this can be considered a standard definition of a rough set.
 Generally, there are four different kinds of situations of rough sets based on
whether S(X) = ∅ and whether S (X) = U, as can be defined as follows:

1. S ≠ ∅ and S ≠ U then X is roughly definable (Fig. 6.7a).
2. S ≠ ∅ and S = U then X is internally definable (or externally undefinable)

(Fig. 6.7b).
3. S = ∅ and S ≠ U then X is externally definable (or internally undefinable)

(Fig. 6.7c).
4. S = ∅ and S = U then X is totally non-definable (or totally undefinable) (Fig.

6.7d).

 (a) (b)

 (c) (d)

Fig. 6.7 Four types of definable and undefinable situations of rough sets. (a) Roughly definable.
(b) Internally definable. (c) Externally definable. (d) Totally nondefinable.

The following is an intuitive meaning of the above classification in terms of the
positive, boundary, and negative regions.

1. Roughly definable. There are elements in U that definitely belong to X (they are

the elements in the positive region). Similarly, there are elements in U for which
we can say that they definitely do not belong X, i.e., they definitely belong to -X,
the complete of X (they are the elements in the negative region).

2. Internally definable. There are elements in U that definitely belong to X, but

 6 Rough Sets

176

there are no elements in U for which we can assure that they do not belong to X
(since there is no negative region).

3. Externally definable. This is the opposite of internally definable. There are no
elements in U for which we can say that they definitely belong to X (since there
is no positive region), but there are elements in U for which we can say that they
do not belong to X.

4. Totally non-definable. We cannot decide for any element of U whether it
definitely belongs to X or -X.

Properties of S and S

Every union of elementary sets (i.e., equivalence classes) is definable. This is
because in this case, S = S = X and BND = ∅, and by the definition of definable.
Also, the following properties hold:

1. S(∅) = S (∅)
 S(U) = S (U)

2. S(X) ⊆ X ⊆ S (X)

3. S(X ∪ Y) ⊇ S(X) ∪ S(Y)

4. S(X ∩ Y) = S(X) ∩ S(Y)

5. S (X ∪ Y) = S (X) ∪ S (Y)

6. S (X ∩ Y) ⊆ S (X) ∩ S (Y)

7. S(U - X) = U - S (X)

8. S (U - X) = U - S(X)

9. S(S(X)) = S (S(X)) = S(X)

10. S (S (X)) = S(S (X)) = S (X)

6.5 Knowledge Representation Systems

A formal definition of knowledge representation systems (KRS)

In rough set theory a knowledge representation system (KRS) is formally defined as
a quintuple as follows. The quintuple is an aggregate of objects, attributes and their

6.5 Knowledge Representing Systems

177

values, and a function. The KRS are typical applications of rough sets.

K = (U, C, D, V, ρ),
where:

U is a set of objects;
C is a set of condition attributes;
D is a set of action (or decision) attributes;
V = ∪a∈F Va, and Va is the domain of attribute a ∈ F, where F = C ∪ D;
ρ: U × F → V for every u ∈ U and a ∈ F is an information function. ρ can also

be represented as: ρu: F → V by ρu(a) = ρ(u, a) for every u ∈ U and a ∈ F.

 The information function ρ can be defined in a more restricted way as: ρ: U × a
→ Va for every u ∈ U and a ∈ F. The previous definition of ρ: U × F → V can
theoretically include many invalid mappings since V contains all possible values of
all attributes. For example, (Adams, temperature) → "none" is probably invalid
mapping; "none" is probably a value of another attribute, say, coughing rather than
temperature. The second definition, ρ: U × a → Va, eliminates such invalid mapping.
 Which definition to employ is one's choice, probably depending on a specific
problem. If there are no errors, invalid mapping will not occur. If |V| is small, the use
of V is manageable.
 Generally, how to represent human knowledge is a difficult problem and it is a
major problem in AI research today. Human knowledge is so complex, there
probably is no simple answer on what is the best form to represent it. Two most
popular methods for representing knowledge in knowledge-based systems are
rule-based and frame-based. The KRS here is closely related to the rule-based
systems. The condition, premise, or "if" part of an if-then rule corresponds to the
condition attributes, and the action, conclusion, or "then" part of the if-then rule
corresponds to decision attributes in this KRS.
 As an example, consider a problem of representing "knowledge" on how various
factors affect heart and stroke problems of persons. Many factors are conceivable,
some have obvious close connections to these diseases while some don't. Some
possible factors are: laboratory test results, such as temperature, pulse, blood
pressure, blood test (e.g., good and bad cholesterol), urinalysis, EKG, etc.; symptoms
such as chest pain, dizziness, etc.; diet, i.e., what to eat and drink; and so forth. Then
C, set of condition attributes, is the set of these factors, for example, C =
{temperature, pulse, . . ., EKG}. (For simplicity, we have dropped symptoms and diet,
etc.) If there are 25 of these condition attributes, |C| = 25. The set of decision
attributes, D has two elements, D = {heart_problem, stroke_problem}, and |D| = 2.
F = C ∪ D in this case is F = {temperature, pulse, . . ., EKG; heart_problem,
stroke_problem} and |F| = 27. Let us assume that the first attribute temperature is
measured as either normal, slightly_high, or high. Then Va for attribute a =
temperature is the domain of the values of this attribute, i.e., Vtemperature = {normal,
slightly_high, high}. Although |Vtemperature| = 3 in this example, |Va| can be any value.
 Similarly, we may define other domains, for example, Vpulse = {low, medium,
high}, . . , Vstroke_problem = {none, moderate, high}. V is the union of all these Va's, e.g.,
V = {normal, slightly_high, high, low, medium, . . .}. A short note on the

 6 Rough Sets

178

definition on V: The elements of V are distinct since V is a set. Hence, for example,
"high" in Vpulse = {low, medium, high} will not appear in V repeatedly after "high" for
Vtemperature as V = {normal, slightly_high, high, low, medium, high, . . .}. This means
that |V| ≤ Σ a∈F |Va|. In certain applications, it may be desirable to distinguish high
pulse from high temperature. In such case, we can define Vtemperature =
{normal_temperature, slightly_high_temperature, high_temperature} and Vpulse =
{low_pulse, medium_pulse, high_pulse}.
 Suppose that information for these condition and decision attributes is collected
for 10,000 men. Some of the information can be unknown or inaccurate. In such a
case, for example, "unknown" can be added as a possible attribute value. For
example, there may not be any EKG test result for Man No. 7,825. The 10,000 men
are the elements of set U, which can be represented as U = {u1, u2, . . ., u10,000}. Now
we can construct the cartesian product U × F. In set form, U × F is the set of many
ordered pairs as {(u1, temperature), . . ., (u10,000, stroke_problem)}. (How many
elements are in U × F? Yes, there are 270,000.) Or, in matrix or two-dimensional
array form, we have 10,000 rows corresponding to the 10,000 men and 27 columns
corresponding to the 25 conditional plus 2 decision attributes.
 Now by using the collected information of 270,000 values (of which some may
have unknown values) for the 10,000 men, we can fill in the U × F matrix, as e.g., (u1,
temperature) = slightly_high, . . ., (u10,000, stroke_problem) = none. Each row of this
matrix representing a specific man is called an object (or entity). This matrix, with
the specific element values, can be viewed as mapping from U × F to V, and denoted
as an information function, ρ: U × F → V. Combining all these values, we have our
KRS as K = (U, C, D, V, ρ). (During the time this part of the book was being prepared,
a Harvard report in the New England Journal of Medicine was just published. It said
that eating fish does not particularly help to avoid heart problems based on the study
for 45,000 men for six years. Can you think of how this study can be formulated as
a KRS?)
 We note that our KRS format can represent many types of applications. Here are
some examples:

 Diagnosis: The above heart and stroke problem is in this category. The same

concept can be applied to engineering, business, and other
medical problems.

 Prediction: e.g., in finance to predict a stock market.

 Control: Simply stated, control is input-output mapping. For example,
to control room temperature, the temperature from a sensor is
input and a heat or cooling source is output. The conditional
attributes correspond to input and the decision attributes to
output.

 Machine learning: Discovering from information functions.

A knowledge representation system (KRS) example

We will consider the following fictitious example to illustrate a knowledge
representation system.

6.5 Knowledge Representing Systems 179

 U is a set of 8 persons (objects): U = {u1, u2,..., u8}. Here u1, u2,..., are symbolic

representations of Adams, Brown, and so on.
 C is a set of 3 condition attributes: C = {Temp, Blood-P (Blood-Pressure), Vision

(Eyesight)}
 D is a set of 2 decision attributes: D = {Heart-Risk, Health (General-Health)}

Fig. 6.8. An information function ρ from U × F to V.

The domains of individual attributes are given by:

VTemp = {below, normal, above}
VBlood-P = (low, average, high}
VVision = {near, standard, far}
VHeart-Risk = {none, slight, serious}
VHealth = {poor, good, excellent}

We have:

F = C ∪ D = {Temp, Blood-P, Vision; Heart-Risk, Health}
V = ∪a∈F Va ={below, normal, above; low, average, high; near, standard, far; none,

slight, serious; poor, good, excellent}
ρ: U × F → V, i.e., ρ: {(u1, Temp),..., (u8, Health)} → {below,..., excellent} is an

information function (Fig. 6.8).

The following Table 3 is one of such information functions.

 6 Rough Sets

180

Table 3. An example information function in information table form for a knowledge
representation system

U C D
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Person Temp Blood-P Vision Heart-Risk Health
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
u1 normal low far slight poor
u2 below average standard serious excellent
u3 above low near serious good
u4 normal average near slight excellent
u5 normal low far none good
u6 above high near serious good
u7 above average standard serious excellent
u8 below average standard none good

6.6 More on the Basics of Rough Sets

Equivalence relations on attributes

As discussed before, for any subset G of C or D, we can define an equivalence
relation on U such that (uG i, uj) ∈ if and only if ρ(uG i, g) = ρ(uj, g) for every
g ∈ G. That is, = {(uG i, uj) | ui and uj have the same value for every attribute g ∈
G}. In words, we group the elements based on the values of specific attributes;
elements ui and uj are related if all the values of the specific attributes are the same,
not related otherwise. We denote the partition induced by the equivalence relation

 as G*. G

Example 7. (From Table 3)

G = {Temp}.

In this case, there is only one element (attribute) in G, which is denoted as g = Temp.

 ρ(u1, Temp) = ρ(u4, Temp) = ρ(u5, Temp) = normal
 ρ(u2, Temp) = ρ(u8, Temp) = below
 ρ(u3, Temp) = ρ(u6, Temp) = ρ(u7, Temp) = above

Hence, = {(uG 1, u1), (u2, u2), ..., (u8, u8); (u1, u4), (u1, u5), (u4, u5), (u4 ,u1), (u5 ,u1),
(u5, u4), (u2, u8), (u8, u2), (u3, u6), (u3, u7), (u6, u7), (u6, u3), (u7, u3), (u7, u6)}.

Fig. 6.9 shows G*, the partition of the three subsets of U induced by G .

6.6 More on the Basics of Rough Sets

181

Fig. 6.9.The partition G* induced by an equivalence relation G , where (ui, uj) ∈ G if and
only if ρ(ui, Temp) = ρ(uj, Temp) in Table 3.

Example 8. (From Table 3)

G = {Temp, Blood-P}

In addition to ρ(ui, Temp) = ρ(uj, Temp) in the previous example we have:

 ρ(u1, Blood-P) = ρ(u3, Blood-P) = ρ(u5, Blood-P) = low
 ρ(u2, Blood-P) = ρ(u4, Blood-P) = ρ(u7, Blood-P) = ρ(u8, Blood-P) = average

ρ(u6, Blood-P) = high

For (ui, uj) to be in G , ρ(ui, g) = ρ(uj, g) must hold for every g in G, i.e., in our
example, for both g = Temp and g = Blood-P. This means that we take the
intersection of the two equivalence relations, one for Temp and the other for
Blood-P:

G = { (u1, u1), (u2, u2), ..., (u8, u8); (u1, u5), (u5, u1), (u2, u8), (u8, u2)}.

The partition induced by G is the product of the partitions induced by the two
equivalence relations for Temp and Blood-P: G* = {X1, X2, X3, X4, X5, X6}, where X1
= {u1, u5}, X2 = {u4}, X3 = {u2, u8}, X4 = {u3}, X5 = {u6}, X6 ={u7}. Fig.6.10 shows
the partition; the superposed dashed lines correspond to the partition induced by
Blood-P.

 6 Rough Sets

182

Fig. 6.10.The partition induced by an equivalence relation G , where (ui, uj) ∈ G if and
only if ρ(ui, Temp) = ρ(uj, Temp) and ρ(ui, Blood-P) = ρ(uj, Blood-P) in Table 3.

POS, BND, and NEG regions of a partition

Let A ⊆ C, i.e., A is a set of some condition attributes, as, e.g., A = {Temp, Blood-P}.
Let B ⊆ D, i.e., B is a set of some decision attributes as, e.g., B = {Heart-Risk} or B
= {Heart-Risk, Health}. Let A* = {X1, ..., Xn} and B* = {Y1, ..., Ym} denotes the
partitions on U induced by the equivalence relations Ã and B , respectively. (These
are for A and B in place of G in the previous example.) We will be interested in
determining to what extent the partition B* as a whole can be characterized or
approximated by the partition A* (Fig. 6.11).

Fig. 6.11. The characterization of partition B* on partition A*.

Example 9. The partitions induced by A = {Temp} and B = {Heart-Risk} in
Table 3.

Let A = {Temp}. As we saw before, Ã = {(u1, u1), (u2, u2), ..., (u8, u8); (u1, u4), (u1, u5),

6.6 More on the Basics of Rough Sets

183

(u4, u5), (u4 ,u1), (u5, u1), (u5, u4), (u2, u8), (u8, u2), (u3, u6), (u3, u7), (u6, u7), (u6, u3), (u7,
u3), (u7, u6)} and A* = {X1, X2, X3} is given in Fig. 6.12(a). Let B = {Heart-Risk}.
Then similarly, B = {(u1, u1), (u2, u2), ...}, and B* = {Y1, Y2, Y3} is given in Fig.
6.12(b).

 (a) (b)

Fig. 6.12 (a) The partition A* = {X1, X2, X3} induced by Ã where A = {Temp}. (b) The partition

B* = {Y1, Y2, Y3} induced by B where B = {Heart-Risk}.

In terms of the lower approximation S (Yj) and upper approximation S (Yj) of Yj ∈ B*
in the approximation space S = (U, Ã), we define the positive, boundary, and
negative regions of the partition B*, as follows:

 POSS (B*) = ∪Yj∈B* S (Yj) = ∪Yj∈B* [∪Xi⊆Yj Xi]

 BNDS (B*) = ∪Yj∈B* (S (Yj) - S(Yj)) = ∪Yj∈B* [∪Xi∩Yj≠∅ Xi - ∪Xi⊆Yj Xi]

 NEGS (B*) = U - ∪Yj∈B* (S (Yj)) = U - ∪Yj∈B* [∪Xi∩Yj≠∅ Xi]

Note that POSS (B*), BNDS (B*), and NEGS (B*) defined above are distinct.
 Note also that the argument type of B* in POSS (B*), etc. defined here is different
from the argument type of X in POSS (X), etc. defined in Section 6.4. X is a set of
elements while B* is a partition induced by an equivalence relation, i.e., a set of sets
of elements.
 We may understand these as our way of defining POS, etc. That is, for X, we
define POSS (X) = S(X). For B*, we define POSS (B*) = union of S(Xi) where Xi ∈
B*. The latter case can be described more generally as: if F = {X1, X2, ..., Xn}, then
POSS (F) = POSS (X1) ∪ POSS (X2) . . . ∪ POSS (Xn). In both cases of POSS (X) and
POSS(B*), the results are sets of elements, i.e., they are of the same type and
consistent, and will not cause any problem. Incidentally, this type of situation is
common in mathematics. For example, a function may be defined on different types

 6 Rough Sets

184

of arguments, one for a scalar, the other for a vector, or a matrix. Of course, the
function must be defined for each of the different types of arguments.

Example 10. POSS (B*), BNDS (B*), and NEGS (B*) applied to Example 9.

S(Y1) = ∪Xi⊆Y1 Xi = ∅, S(Y2) = X3, S(Y3) = ∅

S (Y1) = ∪Xi∩Y1≠∅ Xi = X1, S (Y2) = X2 ∪ X3, S (Y3) = X1 ∪ X2

POSS (B*) = ∪Yj∈B* S (Yj) = S(Y1) ∪ S(Y2) ∪ S(Y3) = ∅ ∪ X3 ∪ ∅ = X3

BNDS (B*) = ∪Yj∈B* (S (Yj) - S(Yj)) = (X1 - ∅) ∪ (X2 ∪ X3 - X3) ∪ (X1 ∪ X2 - ∅)
= X1 ∪ X2

NEGS (B*) = U - ∪Yj∈B* (S (Yj)) = U - ((X1) ∪ (X2 ∪ X3) ∪ (X1 ∪ X2)) = ∅

Attribute dependencies

Various measures can be defined to represent how much B, a set of decision
attributes, depends on A, a set of condition attributes. In the following, we state some
of these measures. Probably the most common measure is the dependency.

Dependency γA (B)

The dependency of B on A, denoted as γA (B), is a plausible measure of how much
B depends on A and is defined as follows.

γA (B) = ⏐ POSS (B*) ⏐ ⁄ ⏐ U ⏐

where S = (U, Ã) is the approximation space, and ⏐ ⏐ denotes the cardinality (i.e., the
number of elements) of a set. Note that 0 ≤ γA (B) ≤ 1. In particular,

1. γA (B) = 1: B is totally dependent on A, i.e., A functionally determines B.

2. γA (B) = 0: A and B are totally independent of each other.

3. 0 < γA (B) < 1: B is roughly dependent on A.

In general, the dependency of B on A can be denoted by A →γ B. For example, A →1
B if B is totally dependent on A.

Example 11. γA (B) applied to Example 10.

γA (B) = ⏐ POSS (B*) ⏐ ⁄ ⏐ U ⏐ = ⏐ X3 ⏐ ⁄ ⏐ U ⏐ = 3 ⁄ 8 = 0.375.

i.e., {Temp} →0.375 {Heart-Risk}.

Example 12. (From Table 3)

6.6 More on the Basics of Rough Sets

185

 {Temp, Blood-P, Vision} →0.5 {Heart-Risk}
 {Temp, Blood-P} →0.5 {Heart-Risk}

We can say that to determine {Heart-Risk}, the {Temp, Blood-P} or {Temp, Blood-P,
and Vision} knowledge is not sufficient, since γ = 0.5. Also, {Vision} is superfluous
since the removal does not affect the dependency.

 As a special case of the dependency, when we choose A as a set of one condition
attribute a as γ{a} (B), it is a measure of how much B depends on that specific
condition attribute. That is, γ{a} (B) gives the importance level of a in determination
of B. In the following, we simply state the definitions of other measures.

Discriminant index βA (B)

βA (B) = ⏐ POSS (B*) ∪ NEGS (B*) ⏐ ⁄ ⏐ U ⏐ = ⏐ U - BNDS (B*) ⏐ ⁄ ⏐ U ⏐

The discriminant index is a measure of the degree of certainty in determining
whether elements in U are elements of B or not B. This is can also be interpreted as
a measure indicating how much uncertainty can be removed by selecting S = (U, Ã).

Significance σA (B)

The significance of B on a specific condition attribute a can be defined by using the
dependencies as follows:

σ{a} (B) = γC (B) - γC-{a} (B)

In words, the significance of B on a is the difference between the dependency of B on
the set of all condition attributes C and the dependency of B on the set of all condition
attributes except the specific attribute a. That is, the significance measures the
importance level of the attribute by considering how a deletion of the attribute from
the entire set of condition attributes affects the dependency. γC-{a} (B) is a sort of the
"complement dependency" of {a} with respect to C.
 We can further extend the significance for {a} to A, a set of any number of
condition attributes:

σA (B) = γC (B) - γC-A (B)

This is a measure to indicate the importance of the set of condition attributes A, rather
than a single attribute a.
 The dependency and discriminant index are "direct" measures focusing on one or
more condition attributes. On the other hand, the significance is "complementary,"
that is, it considers the entire set of condition attributes. Which measure or measures
are to be used depends on a specific application. For example, if γ{a} (B) is equal to
1, then B is totally depends on a. Hence, no other measures may need to be
determined.

 6 Rough Sets

186

Reducts and elimination of superfluous attributes

In a knowledge representation system, each entity is described by the attribute values
of C, the set of condition attributes. (For example, in Table 3, Object u1, is described
by: Temp = normal, Blood-P = low, and Vision = far.) Some attributes in C can be
redundant and thus can be eliminated.
 Let B be a non-empty subset of C. B is called a dependent set of attributes if there
exists a proper subset B' ⊂ B such that 'B = B , i.e., B' →1 B; otherwise, B is called
an independent set or minimal set. B is said to be a reduct of C if B is a maximal
independent set of condition attributes. (Maximal means an addition of any attribute
to B would make the new B dependent.) A reduct of C is denoted as . induces
the same partition as C. In general, more than one reduct of C can be identified. The
collection of all reducts of C is denoted by RED(C).

Ĉ Ĉ

 For example, consider the following Table 4.

Table 4. Illustration of dependent/independent sets, reducts and the core

 U C D
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Person Temp Blood-P Vision EKG Cholesterol Heart-Risk
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
u1 normal low far slight
u2 below average standard serious
.
.

Here we consider C = {Temp, Blood-P, Vision, EKG, Cholesterol} (but not D =
{Heart-Risk}). Let BB1 = {Temp, Blood-P, Vision} and B2B = {Temp, Blood-P}.
Suppose that BB1 and B2B leads to the same equivalence relation on U, i.e., they induce
the same partition on U; then BB1 is a dependent set. B2B is an independent set if there
is no proper subset of BB2 that has the same equivalence relation. In other words, B2B
is an independent set if a deletion of any attribute of BB2 results in a different
equivalence relation. Furthermore, B2B is a reduct of C if BB2 is a maximal independent
set, i.e., an addition of any attribute such as Vision, EKG, or Cholesterol, would
make the set dependent. In other words, B2B has the same equivalence relation as C,
i.e., it induces the same partition as C. Suppose that BB3 = {Blood-P, EKG,
Cholesterol} is another reduct of C, and B2B and BB3 are the only reducts of C. Then
RED (C) = {B2B , BB3}.
 We can extend the above definitions, dependent and independent sets, and reduct,
to take into account the set of decision attributes D. We do this with the notion of
positive regions. Let again B be a non-empty subset of C. B is called a dependent set
with respect to D if there exists a proper subset B' ⊂ B such that POSB' (D*) = POSB
(D*); otherwise, B is regarded as an independent set with respect to D. B is said to
be a relative reduct of C if B is a maximal independent set with respect to D. The
collection of all such relative reducts is denoted by REDD (C). We note that for any
reduct or relative reduct of C, C →Ĉ γ D always implies →Ĉ γ D, i.e., C can be

6.6 More on the Basics of Rough Sets

187

reduced to , without a loss of information. Ĉ
 For example, in Table 4, these extensions will take into account set D =
{Heart-Risk} in terms of POSB(D*). For example, BB2 = {Temp, Blood-P} is an
independent set with respect to D, if a deletion of any attribute results in different
POSB(D*). B2B is a relative reduct of C if POSB2(D*) = POSC(D*). Suppose that BB2
and B3B are the only relative reducts of C. Then REDD (C) = {BB2, B3B }.

Example 13. (From Table 3)

Ĉ = {Temp, Blood-P} is the only relative reduct of C = {Temp, Blood-P, Vision}.
C can be reduced to ; Table 3 can be transformed to another equivalent and
simpler table (Table 5).

Ĉ

 Table 5. Reduced knowledge representation system

 U C D
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Person Temp Blood-P Heart-Risk Health
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 u1 normal low slight poor
 u2 below average serious excellent
 u3 above low serious good
 u4 normal average slight excellent
 u5 normal low none good
 u6 above high serious good
 u7 above average serious excellent
 u8 below average none good

 The core of C is defined as the set of condition attributes belonging to the
intersection of all reducts of C:

CORE (C) = ∩ B∈RED(C)B

For example, suppose C = {Temp, Blood-P, Vision, EKG, cholesterol}, and only
reducts of C are {Temp, Blood-P, EKG} and {Blood-P, EKG, cholesterol}. Then
CORE (C) = {Blood-P, EKG}.
 When a deletion of a condition attribute from C results in a different equivalence
relation from the equivalence relation defined for C, then the condition attribute is
called indispensable. In equation form, a condition attribute a ∈ C is indispensable
if C a ≠ where CC a = C - {a}. The core of C is equal to the set of all indispensable
attributes in C. When dealing with an information table, a common problem is to
identify the most essential condition attributes. The core or all of its elements, the
indispensable condition attributes, is necessary in order to have the same equivalence
relation as C, although it is not sufficient. A reduct is sufficient to have the same
equivalence relation as C. When there are many reducts, a selection of a reduct is not
necessarily obvious. We can employ various criteria such as selecting a reduct of the

 6 Rough Sets

188

smallest number of attributes, or selecting a reduct that contains most common
attributes for the specific application under consideration, and so forth.
 As before, we can extend the above definitions to take into account D, the set of
action attributes. The relative core is the set of condition attributes belonging to the
intersection of all relative reducts of C:

CORED (C) = ∩ B∈REDD(C)B

A condition attribute a ∈ C is said to be indispensable with respect to D if POSc-{a}
(D*) ≠ POSc (D*). The relative core of C is equal to the set of all indispensable
condition attributes with respect to D. The core can be easily determined from a KRS.
The core is a subset of every reduct, i.e., every reduct is a superset of the core. Hence,
it is advantageous to start with the core in order to find a reduct.

Example 14. (From Table 3)

C = {Temp, Blood-P, Vision}, D = {Heart-Risk, Health}.

Let D' = {Heart-Risk}. Then the relative core of C with respect to D':

CORED' (C) = {Temp}

There are two relative reducts of set C with respect to D':

BB1 = {Temp, Blood-P}, B2B = {Temp, Vision},

i.e., REDD' (C) = {BB1, B2B }, and CORED' (C) = B1 ∩ BB2.

6.7 Additional Remarks

Implementation considerations

There are many ways to employ rough sets depending on specific applications. The
following are some possible considerations.

1. Representation of input data and information tables. Since rough sets deal with

information tables, computer processing requires storing raw data represented as
information tables. The simplest data structure for an information table will be
a two-dimensional array since the table is a two-dimensional matrix. When the
size of the table is not known in advance, however, a linked list is more flexible
to dynamically allocate memory space. A linked list with pointers of row-wise
and column-wise can be used to access horizontal and vertical directions of the
table. Typically, an array may be easier for programming, while a linked list may
be more flexible for variable size of information tables.

2. Preparation and analysis of input data. Input data can be carefully prepared

6.7 Additional Remarks

189

manually or sometimes through other pre-processing techniques such as
statistical analysis. We try to include the minimum necessary and sufficient
information for a particular application. The condition attributes can be
manually arranged in decreasing order of importance, if it is known.

3. Discretization of input data. Raw data is often given as numeric values, such as

99.7, rather than descriptive ones given in examples in this chapter, as, for
example, Temp = below, normal, or above. When raw data is in numeric form,
usually we need to pre-process it by assigning one of discrete intervals - a sort
of "quantization" of continuous data. Such quantization process is called
discretization. For a programming purpose, descriptive values such as "below"
do not necessarily have to be used exactly as they appear. Instead, discrete
numeric values can be associated as, for example, below = 1, normal = 2, and
above = 3. This numeric representation is often easier for programming.

4. Analysis of condition attributes. For example, determining indispensable attr

ibutes, reducts, and the core (with or without respect to a decision attribute).
 Suppose that we arrange the condition attributes in decreasing order of
importance, based on intuition or some sort of pre-processing. We can start from
the least important attribute. We drop it and check whether the resulting partition
is the same as the original one containing all the condition attributes. This
requires exhaustive comparisons by the computer. If the result is the same, the
attribute is dispensable; otherwise it is indispensable. We can repeat this process
for the remaining attributes, each time by choosing one attribute. At the end of
this process, we know whether each attribute is dispensable or indispensable for
 the entire set of condition attributes. The set of all the indispensable attributes is
the core, that is, the set of absolutely necessary condition attributes (although it
may not be sufficient).
 A reduct is a set of sufficient condition attributes equivalent to the original
data and we can work on it to derive rules. Several scenarios are possible to
determine a reduct depending on a specific application.

(a) If all the attributes are indispensable, we cannot drop any of the attributes.

The core is the only reduct.
(b) If some attributes are indispensable while others are not, we can start from

the core to find a reduct. We pick one of the dispensable attributes, and keep
adding one at a time, until the resulting partition is the same as the original
one with all the input attributes. This process requires exhaustive
comparisons.

(c) In another extreme case, there may be no indispensable attributes, that is,
the core is empty. In this case, we can start from a set of some dispensable
attributes, adding or dropping one at a time until we find a reduct.

 In practice, often it is necessary to limit the number of attributes and the
number of possible values each attribute can take. For example, if there are
seven attributes and each attribute can take one of four values, the number of
possible combinations is 4 ** 7 = 16,384. This number may be too big; we may

 6 Rough Sets

190

want to limit the maximum to, say, 10,000.
For certain applications, the implementation can stop here. The resulting

table of this Step 4 can be directly used to obtain, for example, condition to
decision attribute mapping.

5. Determination of relations (e.g., POS) of the decision attributes on the condition
attributes. This step may simplify the condition-to-decision mapping. More are
given in a separate topic below.

Again, for certain applications, the implementation can stop here. The result
of this Step 5 can be directly used for certain types of applications.

6. Induction of rules. We can write explicit rules based on the information obtained

in Step 5 (e.g., if the input variable 1 = small, . . ., then the decision variable =
medium). Simplification of the set of the rules (e.g., combining rules) can be
done on the table form in Step 5 before deriving rules. This approach may
typically be easier than deriving simple rules first, then trying to simplify the set
of the rules.

Determination of relations

There are two major approaches to determine POS regions, etc., of the decision
attributes on the condition attributes.

1. Local-to-global approach : In this approach, we start with single condition

attributes (which are considered to be "local") to determine the relations and
gradually increase the number of attributes. That is, we work on lower-to-higher
number of condition attributes. For example, suppose that there are three
condition attributes, a1, a2, and a3. In Pass 1, we consider one condition attribute
at a time, and determine the relations. For example, if a1 = low defines a positive
region for decision = high, this can be a rule. For a1 = low, we need not add other
attributes as, for example, a1 = low, a2 = low, and a3 = For those cases where
POS are not obtained, we can proceed with a higher number of condition
attributes. In Pass 2, we will consider two condition attributes at a time. For
example, a1 = medium and a3 = high may be POS for decision = low, which can
be a rule. Again, we need not consider a2, since the rule should hold for all
possible values of a2. In Pass 3, we consider a1, a2, and a3 for the remaining cases,
which are left out from preceding passes.

The rules derived by the above process can be combined, yielding a smaller
number of rules. How to combine the rules may depend on a specific application.
When we gradually increase the number of condition attributes, we must make
certain that there are no redundant attributes. That is, we must make certain that
the set of condition attributes is not larger than a reduct.

2. Global-to-local approach: This is the opposite of approach 1, that is, we work on

higher-to-lower number of condition attributes. Suppose that we have a reduct.
We determine the relations on partitions derived from considering all the
condition attributes in the reduct (which is considered as "global" as a whole).
The partitions will be finest in structure in this process. After determining

6.8 Case Study and Comparisons with Other Techniques

191

positive regions for these partitions, we may find certain condition attributes can
be dropped for certain rules because the values of these attributes do not
contribute to the rules. For example, suppose that we have "if a1 = low and a2
=low (and a3 = low or medium or high) then decision = low". Then a3 can be
dropped since the rule does not depend on a specific value of a3, leading to a
generalized rule: "if a1 = low and a2 then decision = low".

3. As an extension of the above, these two approaches can be mixed. For example,

start with single condition attributes to a certain number of attributes, then
switch to the global-to-local approach for the remaining cases.

Extensions of the deterministic rough sets

The model discussed in the previous sections is based on deterministic information.
This model can be extended to include probabilistic information to deal with the
non-deterministic problems. Or, the model can be extended to incorporate fuzzy
logic - a hybrid system of rough and fuzzy sets. These extended models are
particularly suitable for uncertainty problems.
 The basic idea of these extensions is to associate the probability or fuzziness to the
information dealt with. For example, health of a person may not be simply poor or
good. Instead, it may be poor and good with a certain probability or fuzziness.

Major uses of rough sets

Major types of functions rough sets can perform include: data reduction (i.e.,
elimination of superfluous information); discovering of condition-action
dependencies, and approximate classification of data. These types of operations lead
to the approximation domains such as knowledge-based systems and application
areas such as engineering, discussed before at the beginning of this chapter.

6.8 Case Study and Comparisons with Other Techniques

Comparing rough set theory and other techniques in a general term is a difficult task.
There have been debates on this issue, and they will continue in the future. While
there are no mathematical proofs to show which technique is most suitable for what
types of problems, it appears that each technique has specific strengths and
limitations for certain problems. Similar situations also exist for other types of
problems. In case of optimization, for example, many techniques are employed
depending the types of the problems including analytical methods, operations
research techniques (such as linear programming, dynamic programming and various
heuristic approaches), so-called guided random search techniques (such as neural
networks and genetic algorithms), and so on.
 In this section, we will put aside this difficult issue and start with a simple case
study to apply rough set theory. We then apply a decision tree technique called ID3
to the same case study. ID3 is the most successful machine learning technique in
traditional AI in terms of practical applications. Finally, we will briefly compare

 6 Rough Sets

192

rough set theory with some other techniques.

6.8.1 Rough Sets Applied to the Case Study

Case study - process control

Control is often the most successful domain for practical applications in many areas
in AI. Control here refers to the control of physical characteristics such as
temperature, pressure, speed, and electric current, or chemical characteristics such as
ingredients of raw materials, and so forth. There are different types of AI applications
to the control problem. One is developing efficient and robust control for difficult
problems. Fuzzy control falls into this category. Another type is automatic induction
of control rules from sampled input-to-output mappings. Neural networks have been
applied to these types of control problems, especially for numeric data. In this case
study, we consider automatic induction of process control rules for material
production at a plant. For example, production of fuel for nuclear power plants is
commonly performed by transforming uranium hexafloride gas into pellets of
uranium dioxide powder. These pellets must be of high quality, but complex
interactions among the parameters (attributes) make prediction of the quality difficult.
Conventional statistical methods may have limited success and machine learning
techniques may give significant contributions.
 In the following, we set up a fictitious, much simplified version of process control.
The sampled raw data is given as Table 6. The number of samples in a real world
problem would be much higher, say, 5,000, rather than 10. Our problem is to induce
rules of condition-to-decision, or input-to-output in control terms, based on this
information.

 Table 6. Sampled raw data for process control.

 U C D
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Sample Temp Pressure Size Quality
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 u1 normal low fine good
 u2 normal low fine good
 u3 above medium coarse bad
 u4 normal medium coarse bad
 u5 normal medium fine good
 u6 above high coarse bad
 u7 above high fine bad
 u8 normal high fine bad
 u9 above high coarse good
 u10 normal high fine bad

For example, u1 represents one of 10 samples or batches actually taken at the plant.
When the processing temperature was normal, the pressure was low, and the grain

6.8 Case Study and Comparisons with Other Techniques

193

size of the raw material was fine, the quality of the product was good.

Rough sets approach

The partition induced by all the condition attributes, Temp, Pressure and Size is {{u1
u2}, {u3}, {u4}, {u5}, {u6, u9}, {u7}, {u8, u10}}. All the condition attributes are
indispensable, that is, a deletion of any attribute will result in a different partition.
Hence, the set of all the condition attributes is the core as well as the only reduct. We
will work on this reduct by the local-to-global approach. In this case, we need not
check redundancy in the process of adding condition attributes, since they are all
indispensable. If we know the importance ranking of the condition attributes, we can
rearrange them in that order. We assume that we do not have this information in
advance, therefore we keep the original order of Temp, Pressure, and Size.

Cases of one condition attribute

We select one condition attribute at a time, partition the universe based on the
attribute, then determine the positive regions with respect to D = {Quality}.

 Quality
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Temp good bad
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 normal u1 u2 u5 u4 u8 u10
 above u9 u3 u6 u7

We see no positive regions.

 Quality
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Pres good bad
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 low u1 u2
 medium u5 u3 u4
 high u9 u6 u7 u8 u10

{u1, u2} is a positive region (underlined); we can have a certain rule, as for example:

 Rule 1: if Pressure = low, then Quality = good

 Quality
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Size good bad
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 fine u1 u2 u5 u7 u8 u10
 coarse u9 u3 u4 u6

 6 Rough Sets

194

There are no positive regions. At the end of cases of one condition attribute, we can
rearrange the order of the attributes. In this example, we can place Pressure first
since it appears to play a key role for decision making. We will place Pressure, Temp,
and Size, in this order.

Cases of two condition attributes

There are three combinations of the attributes, (Pressure, Temp), (Pressure, Size),
and (Temp, Size).

 Quality
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Pres Temp good bad
 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 medium normal u5 u4
 above u3
 high normal u8 u10
 above u9 u6 u7

Note that Pressure = low has been eliminated in the above because of Rule 1. There
are two positive regions in the above, yielding two certain rules:

 Rule 2: if Pressure = medium and Temp = above, then Quality = bad.
 Rule 3: if Pressure = high and Temp = normal, then Quality = bad.

 Similar analysis for (Pressure, Size) will give three rules:

 Rule 4: if Pressure = medium and Size = fine, then Quality = good.
 Rule 5: if Pressure = medium and Size = coarse, then Quality = bad.
 Rule 6: if Pressure = high and Size = fine, then Quality = bad.

Similarly, from (Temp, Size) analysis, we have:

 Rule 7: if Temp = above and Size = fine, then Quality = bad.

Cases of three condition attributes

After the above analyses, two elements, u6 and u9, remain. Both elements are in the
same subset for Pressure = high, Temp = above, and Size = coarse, and Quality is bad
for u6 and good for u9. Hence, we have an uncertain rule:

Rule 8: if Pressure = high, Temp = above, and Size = coarse, then Quality =
good with 0.5 confidence factor and Quality = bad with 0.5 confidence
factor.

We can also reduce Rule 8 to the following Rule 8' since Temp is superfluous.

 Rule 8': if Pressure = high and Size = coarse, then Quality = good with 0.5

6.8 Case Study and Comparisons with Other Techniques

195

confidence factor and Quality = bad with 0.5 confidence factor.

6.8.2 ID3 Approach and the Case Study

ID3 is a machine learning technique based on constructing a decision tree from given
data. There have been newer versions called C4.5 and C5, but the original name ID3
is still often used to refer to the family of this technique and we will follow this
convention. As mentioned earlier, the decision tree approach is the most successful
machine learning technique in traditional AI in terms of practical applications. (For
practical applications of traditional machine learning, see P. Langley and H.A. Simon,
Applications of Machine Learning and Rule Induction, Communications of the ACM,
Vol. 38, No. 11 (Nov. 1995), 54-64.) ID3-type techniques are normally discussed in
the traditional AI and machine learning literature, the counterpart of this book. In the
following, we will start with a measure of uncertainty in probability theory, and the
concepts of entropy in information theory. Entropy is employed by ID3 to measure
information gain during the classification process of data. We will then briefly
overview the ID3 approach and apply it to our case study problem. (For more on ID3,
see J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.)

 The basic idea of ID3 is classification of data by means of constructing a decision
tree. For example, suppose that we are given data similar to Table 6, with the three
condition attributes and one decision attribute. There may be 100 elements in the
universe, u1 to u100. We determine which one of the three condition attributes best
contributes to classifying the 100 elements into two groups of Quality = good and
Quality = bad. To determine the "best" contribution, we use a measure called entropy.
We compute the entropy for each of the three cases corresponding to the three
condition attributes, then pick the best one. Perhaps Pressure is the best attribute.
Then Pressure will be the first attribute to be used to classify the data, at the root of
the decision tree. For the following levels of the tree, the same procedure is repeated
recursively for further classification of the data. For example, at the branch for
Pressure = low, we compute the entropy for each of the remaining attributes, Temp
and Size, and pick the best one. We repeat this process for Pressure = medium and
high. The meaning of these statements will be clearer when we see the following case
study.

Probability distribution and a measure of uncertainty

A set of outcomes or events is called an outcome space. Each outcome is denoted by
ω, and the outcome space by Ω. Any expression or statement that assigns to each
outcome a real number is called a random variable, denoted as X(ω). We can
determine probability distributions P(ω) and P(X(ω) = x). P(ω) is the probability that
the outcome is ω. P(X(ω) = x) is the probability that the random variable X has the
value of x. Often we forget about the underlying outcome space and work directly
with the distribution of the random variable as P(x).

Example. Tossing a coin twice

Ω = {HH, HT, TH, TT} and ω can be any one of HH, etc. Let a random variable X(ω)

 6 Rough Sets

196

be the number of heads. Then X(HH) = 2, X(HT) = 1, X(TH) = 1 and X(TT) = 0. The
probability distribution P(ω) is: P(HH) = 0.25, P(HT) = 0.25, P(TH) = 0.25, and
P(TT) = 0.25. The probability distribution of the random variable X is: P(X(ω) = 2)
or by forgetting the underlying outcome space, P(2) = 0.25; similarly, P(1) = 0.5, and
P(0) = 0.25.

 We define a measure of uncertainty or indetermination for a piece of information
i as

-log2 P(i) bits ,

where P(i) is the probability corresponding to information i. This measure represents
the number of bits required to describe the information. We often omit the base 2 of
log.

Example. HH, etc. for tossing a coin twice

-log P(HH) = -log (1/4) = -log 2-2 = 2 bits. Similarly, -log P(HT) = -log P(TH) = -log
P(TT) = 2 bits. These information can be represented by 2 bits as: HH → 11, HT →
10, TH → 01 and TT → 00.

Entropy in information theory

Entropy in information theory is originated from the concept of entropy in
thermodynamics and statistical physics. In the latter, entropy represents the degree of
disorder in a substance or a system. Similarly, entropy in information theory is a
measure to represent the uncertainty of a message as an information source. The
more information in a message, the smaller the value of the entropy.
 Entropy E of a random variable X(ω) with a probability distribution P(X(ω) = x) is
defined by

E = -
all x
∑ P(X(ω) = x) × log2 P(X(ω) = x)

The entropy is a measure of the expected (that is, average) uncertainty or
indetermination in the random variable. It is the number of bits on the average
required to describe the random variable. We will use the convention that 0 log 0 =
0, since lim x→0 x log x = 0.

Example.

Consider a random variable which has a uniform probability distribution over 8
outcomes. P(i) = 1/8 for each i = 1 to 8.

E = - P(i) × log
8

1i=
∑ 2 P(i) = -

8

1i=
∑ P(1/8) × log2 P(1/8) = 3 bits

6.8 Case Study and Comparisons with Other Techniques

197

To identify an outcome, we need a label that takes on 8 different values; 3-bit labels,
000, 001, ..., 111, suffice the requirement.

Basics of ID3

As described before, ID3 is a machine learning technique based on constructing a
decision tree. The original ID3 used a criterion called gain. The gain is the amount
of reduction in the entropy E when a data set is partitioned based on a certain
parameter (attribute).

gain = (E of before partitioning) - (E of after partitioning)

 For some years the gain was used and gave good results. But it has a deficiency -
it has a bias in favor of test with a parameter with many possible values. To correct
this, we can use gain ratio defined as follows. First define split info as

split info = log
i i

i

S S
U U

⎧ ⎫⎛ ⎞⎪ ⎪− × ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑

where U is the universe of elements before partitioning, and Si's are subsets of U as
the result of partitioning. The gain ratio is then defined as

gain ratio =
gain

spilt info

ID3 applied to case study

We will apply the ID3 approach using the gain criterion to the case study problem
presented in the previous section. At the end, we will briefly show computation of
gain ratio. The universe U contains 10 elements, {u1 u2, u3, u4, u5, u6, u7, u8, u9, u10}.

Entropy E (0) before any partitioning

Out of the 10 elements in the universe, four elements, u1 u2, u4, and u9, are Quality =
good, and the remaining six elements are Quality = poor. The probability of Quality
= good is 4/10, and the probability of Quality = poor is 6/10. Hence, the entropy of
random variable Quality = good or bad is

 E (0) = -[P(Quality = good) × log P(Quality = good)
 + P(Quality = bad) × log P(Quality = bad)]

 = - () ()4 4 6 6
log log

10 10 10 10
× + ×⎡ ⎤

⎢ ⎥⎣ ⎦
 = 0.529 + 0.442= 0.971

Entropy E at level-1 partitioning

 6 Rough Sets

198

Partitioning by Temp

When the universe is partitioned by attribute Temp, we have two subsets,
corresponding to Temp = normal and Temp = above, as is shown in Fig. 6.13.
 We compute the entropy of each subset, then the weighted sum of these two
entropies as the total entropy for the partitioning the universe by Temp. In the subset
(that is, the branch in the decision tree) for Temp = normal, there are six elements, u1
u2, u4, u5, u8, and u10. Of these, Quality = good for three elements, u1 u2, and u5, and
Quality = bad for three elements, u4, u8, and u10. The entropy of the Temp = normal
branch is -[(3/6) log (3/6) + (3/6) log (3/6)] = -[(1/2) × (-1) + (1/2) × (-1)] = 1.
Similarly, we can compute the entropy of the Temp = above branch of u3, u6, u7, u9,

Fig. 6.13. A decision tree partitioned by Temp.

as -[(1/4) log (1/4) + (3/4) log (3/4)] = 0.25 × 2 + 0.75 × 0.4150 = 0.811. We take the
weighted sum of these two entropies as the entropy of partitioning U by Temp. The
weight of each branch is the ratio of the number of elements in the branch over the
total number of elements in the universe.

E (Temp) =
6 4

1 0.
10 10

× + ×⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

811 = 0.925.

The gain by partitioning by Temp then is computed by

E (0) - E (Temp) = 0.971 - 0.925 = 0.046

Partitioning by Pressure

Similarly, we can compute E (Pres), the entropy of partitioning U by Pressure. In this
case, we have three branches, corresponding to Pres = low, medium and high, as is
shown in Fig. 6.14.

6.8 Case Study and Comparisons with Other Techniques

199

Fig. 6.14. A decision tree partitioned by Pressure.

We compute the entropy of each branch as follows. For Pres = low, -[(2/2) log (2/2)]
= 0; for Pres = medium, -[(1/3) log (1/3) + (2/3) log (2/3)] = 0.918; for Pres = high,
-[(1/5) log (1/5) + (4/5) log (4/5)] = = 0.722. E (Pres) as the weighted sum of these
entropies is

E (Pres) = 0.918
2 3

0
10 10 10

+× + ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

5
 × 0.722 = 0.636 .

The gain by partitioning by Pres is

E (0) - E (Pres) = 0.971 – 0.636 = 0.335

This gain is larger than the gain by partitioning by Temp. The larger the gain, the
better.

Partitioning by Size

Similar computation yields E (Size) = 0.925, hence

E (0) - E (Size) = 0.971 - 0.925 = 0.046

Conclusions at level-1 partitioning. The gain by partitioning by Pressure is the
highest, and we choose Pressure to be the attribute to partition the universe as in Fig.
6.14. In the Pres = low branch of Fig. 6.14, both elements, u1 and u2, have Quality =
good. The entropy of this branch is zero, and it leads to a rule

 Rule 1: if Pressure = low, then Quality = good

Entropy E at level-2 partitioning

For the remaining two branches (subtrees) in Fig. 6.14, corresponding to Pres =
medium and high, their entropies are not zero, and we need further partitioning by the
remaining attributes, Temp and Size. Computation of entropies of the branches is the

 6 Rough Sets

200

same as before, that is, the same scheme is applied recursively to smaller subtrees.

Pres = medium subtree

Before further partitioning, this subtree has the entropy of E (Pres = medium) = 0.918.
When this subtree is further partitioned by Temp, the entropy E (Pres = medium,
Temp) = (2/3) × {-[(1/2) log (1/2) + (1/2) log (1/2)]} + (1/3) × {-[(1) log (1)]} = (2/3)
× 1 + (1/3) × 0 = 0.667. The gain is 0.918 - 0.667 = 0.251. When partitioned by Size,
the entropy E (Pres = medium, Size) = (1/3) × 0 + (2/3) × 0 = 0. The gain is 0.918 -
0 = 0.918. Hence, we choose Size for further partitioning for this Pres = medium
subtree.

Pres = high subtree

Before further partitioning, this subtree has the entropy of E (Pres = high) = 0.722.
When this subtree is further partitioned by Temp, the entropy E (Pres = high, Temp)
= 0.551. The gain is 0.722 - 0.551 = 0.171. When partitioned by Size, the entropy E
(Pres = high, Size) = 0.4. The gain is 0.722 - 0.4 = 0.322. Hence, we choose Size for
further partitioning for this Pres = high subtree.
 The result of level-2 partitioning is shown in Fig. 6.15. We see three new branches
whose entropies are zero. Corresponding to these three branches, we can have three
rules.

 Rule 2: if Pressure = medium and Size = fine, then Quality = good.
 Rule 3: if Pressure = medium and Size = coarse, then Quality = bad.
 Rule 4: if Pressure = high and Size = fine, then Quality = bad.

Fig. 6.15. A decision tree after level-2 partitioning.

Entropy E at level-3 partitioning

At the branch of Pressure = high and Size = coarse, we need further partitioning by
Temp to gain more information. However, in this example, both elements, u6 and u9,

6.8 Case Study and Comparisons with Other Techniques

201

have Temp = above, thus additional partitioning by Temp does not reduce the
entropy. Therefore, we stop our process here. From this last branch we may say

 Rule 5: if Pressure = high and Size = coarse, then Quality = good with 0.5 and
bad with 0.5 confidence factor and bad with 0.5 confidence factor.

Gain ratios

Although we have used the gain criterion for simplicity in the preceding discussions,
an alternative is the gain ratio as discussed earlier. The gain ratio for partitioning by
Temp at level-1 can be computed as follows.

 split info = -[(6/10) log (6/10) + (4/10) log (4/10)] = 0.971

 gain ratio = gain / split info = 0.046 / 0.971 = 0.047

The gain ratio for partitioning by Pressure at level-1 can be computed as follows.

 split info = -[(2/10) log (2/10) + (3/10) log (3/10) + (5/10) log (5/10)] = 1.4855

 gain ratio = gain / split info = 0.521 / 1.4855 = 0.351

 Similarly, the gain ratio for partitioning by Size can be computed as 0.047. In our
case study, the gain ratio criterion will give the same result as using the gain, that is,
partitioning by Pressure at level-1. Generally, these two criteria can result in different
partitioning. When an attribute has many possible values, such as very low,
moderately low, slightly low, and so forth, partitioning by this attribute tends to yield
a low entropy value since each branch will have a relatively small number of
elements. If another attribute has fewer possible values, say, only two as low and
high, and still gives the same entropy value as using an attribute with many possible
values, this new attribute is much better for classification. This is why the gain ratio
may be a better criterion than the gain.

Comparison of rule inductions by rough sets and ID3

After studying rule induction examples by rough set theory and ID3, we may wonder
how these two approaches can be compared. For one, we note that rough sets are a
mathematical theory, as set theory. On the other hand, ID3 is a machine learning
technique for rule induction. Hence, it may not be appropriate to compare these two
on the same ground. Nevertheless, both can be used for rule induction as we have just
seen, and we would like to make some comparisons on this aspect. Comparisons in
general terms, however, are difficult because there are so many different cases. In the
following, we present rule-of-thumb guidelines which may apply in many situations.
 Both approaches typically work on a table form of raw data like Table 6. In our
case study, rough set theory and ID3 give somewhat similar results. In general, rough
set theory and ID3 may give similar results for relatively small problems. For others,
the results can be quite different. How to efficiently derive rules, and in what form,
are the key problems in machine learning.

 6 Rough Sets

202

 Obviously these two methods employ different classification criteria. Rough set
theory is typically based on the relations between the condition and decision
attributes, such as positive and boundary regions, and reducts and cores. ID3 uses
entropy as a measure for its classification process. One might argue that ID3 is based
on entropy, which is a concrete quantitative measurement in information theory, but
it might require more computation time. Each method, however, can be modified or
extended. Depending on the modification or extension, these methods can be closer.
 For example, we can compute entropy in rough sets as a measure of certainty for
uncertain rules.
 More importantly, the induced knowledge from these methods can be different.
For our case study, Rules 2, 3 and 7 derived by rough sets are not by ID3. One might
say that the rules derived from rough sets are more extensive, while ID3 focuses on
important rules based on the entropy criterion. If there are too many rules to deal with,
ID3 would be more efficient. However, ID3 could overlook potentially useful rules.
Again, these methods can be modified or extended. For example, less important rules
derived from rough sets can be pruned based on a some measure.
 Also, the ways to represent derived knowledge or rules in these two methods are
different. Rough set theory is based on non-tree structure, typically two-dimensional
tables, while ID3 is based on decision trees. Not every knowledge would be best
represented by either a table or a tree. Certain classes of problems are probably best
represented by tables, some by trees, and still others by some different data structures.
Searching for specific rules in a knowledge base of tree form is generally efficient.
We recall that many efficient algorithms are based on tree structures, such as binary
search and heapsort. One might argue that merging trees for knowledge base
restructuring could be harder than merging tables.
 In a more general perspective, both techniques described here, which are based on
raw data like Table 6, are called attribute-based learning. The idea is that we have
sample data for a set of condition and decision attributes, and our objective is to
extract knowledge from the data. Certainly this would not be the only way to present
data. Major advantages of attribute-based learning are its relative simplicity,
efficiency, and a capability of handling noisy data. Its disadvantages are limited
capability of expressing the underlying knowledge, and lack of specifying relations
among parts of the elements.
 All of these advantages and disadvantages discussed above are debatable issues.
As said before, there is no mathematical proof to answer these questions for general
cases. Probably a consensus would be that no single approach is the best for all
problems. That is, ID3 would be more effective for certain classes of problems, while
rough sets for others.

6.8.3 Comparisons with Other Techniques

How rough set theory differs from statistical methods

Both approaches deal with similar problems, i.e., reasoning about data. They are
different, however, and certain problems are solved better by traditional statistical
methods while the other by rough sets, and they can complement each other. For
example, in statistical analysis, the target data under investigation is assumed to be
multivariate normal distribution. In the rough set approach, no such assumption is

6.8 Case Study and Comparisons with Other Techniques

203

made. This means that when there is a large amount of sampling data and its
distribution is close to normal, the classical statistics may work better; otherwise, i.e.,
either the sampling is too small and/or there is a non-normal distribution, rough sets
may perform better. But this is only a guideline; there is no theory that predicts
exactly under what circumstance which approach works better.
 In discriminant analysis, we compute statistical characteristics such as the means
and covariance matrices, then we classify the data objects to one of these classes on
the basis of the description with the discriminant scores. The result can be viewed as
an algorithm in the form of functional representation. In rough sets, we do not
compute means, and so on, but work directly on the data. We reduce redundant
attributes, arriving at minimal subsets of attributes ensuring the same quality of
classification. The result is an algorithm composed of logical decision rules. (For
more see Stefanowski, 1992.)
 Examples for which the statistical method failed but rough sets succeeded include
the following: airline pilot performance evaluation, geographical data classification,
questionnaire analysis in sociology and psychology, and many medical applications
(Pawlak, et.al., 1988).

Dempster-Shafer and rough set theories

The Dempster-Shafer theory of evidence, is a relatively recent technique especially
for dealing with uncertain knowledge. The major difference between the
Dempster-Shafer and rough set theories is that the former uses belief functions as a
main tool, while the latter makes use of relations among the attributes such as the
lower and upper approximation sets. Although the Dempster-Shafer theory can be
employed for induction, its major objectives are dealing with uncertain knowledge
and approximate reasoning. The Dempster-Shafer theory can be said to be subjective
(based on an expert's judgment) while rough set theory is objective (based on the
data).

Crisp, fuzzy, and rough sets: an illustration

Consider a group of people, such as students in a class, an audience at a conference,
or employees in a department of a company, as the universe under consideration. The
set of women of this universe is a crisp set; there is no vagueness involved for this set.
The set of young people is a good example of a fuzzy set. Since the measure of
youngness does not change abruptly from 1 to 0 at a certain age, say 30, it is natural
to associate a degree of youngness to each person. A 25 years old person has a degree
of 1, 30 years 0.9, 35 years 0.5, etc.
 In this fuzzy set example, we assume the age of each person is known. Let us
imagine a hypothetical experiment where the age is not known and we want to
estimate the age from observation. There are many condition attributes to be
observed, such as facial appearance, whether the hair is grey, white or the head is
bald, how the voice sounds, and so on. We record the value of each attribute for each
person to the best of our ability whenever it is known. We then come up with an
estimated age for each person, which is the decision attribute of this problem. This is
a rough set problem.
 Suppose that we automate this process using a TV camera, a microphone, and of

 6 Rough Sets

204

course a computer. Thanks to machine vision and speech processing technologies,
the machines can record the condition attribute values automatically. We may use
1,000 people, whose ages are already known, as training samples. The raw data are
crude, some are incomplete or inaccurate, and some are irrelevant. Rough sets will
tell which condition attributes are important, and to what degree, and how their
values can be used to determine the values of the decision attribute - the age.
(Similarly, humans are also able to accumulate such experience over years to build
common sense and to estimate a person's age from observed information.) Perhaps
the color of clothes a person wears is not important and may be dropped from the
condition attributes. Sometimes, we can intentionally drop some condition attributes
and see how the system performs - weighing a trade-off between the amount of work
involved for data gathering and subsequent analysis, and the accuracy of the resulting
age estimate. After this training session, we perform our original experiment on the
group of people, students in a class, or whatever else. Rough sets will tell us the best
estimates of their ages under the given circumstance.
 We might wonder whether fuzzy set theory can achieve the same, i.e., estimating
ages of people from observed data. Yes, it can, but it would be much more
time-consuming. What we have to do is to develop many fuzzy if-then rules, such as
"if a person's hair is ... then" As we can see in this example, rough and fuzzy set
theories can complement to each other. For example, in the above age group problem,
rough sets can be used as a front-end of a fuzzy system. Conversely, for certain
problems a fuzzy system can be used as a front-end or an aid of a rough set system.
For example, some condition attribute values may be expressed in terms of fuzziness,
which may be dealt with fuzzy logic. Some condition attribute values may be
pre-processed using fuzzy if-then rules yielding a smaller number of intermediate
attribute values. Mapping from condition to decision attributes may involve
fuzziness, etc. Or, rough and fuzzy set subsystems can simply coexist to derive and
exchange information back and forth between them.

Further Reading

Z. Pawlak, “Rough Sets,” International Journal of Computer and Information
Science, 11, 341-356, 1982 (a seminal article).

Z. Pawlak, Rough Sets: Theoretical Aspects and Reasoning about Data, Dordrecht,
Netherlands: Kluwer Academic, 1991 (a comprehensive book).

Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “Rough Sets,”
Communications of the ACM, Vol. 38, No. 11, 89-95, Nov. 1995.

L. Polkowski, Rough Sets:Mathematical Foundations. Physica-Verlag, Heidelberg,
2002.

Z. Pawlak, “A Treatise on Rough Sets”, Transactions on Rough Sets IV, Lecture
Notes in Computer Science (LNCS), Vol. 3700, Springer-Verlag, Berlin, 1-17, 2005.

R.Slowinski, S.Greco, B.Matarazzo: “Rough Set Based Decision Support,” Chapter
16, in E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory

Further Reading

205

Tutorials in Optimization and Decision Support Techniques, Springer-Verlag, New
York, 475-527, 2005.

A journal that carries articles on rough sets.

Transactions on Rough Sets, Lecture Notes in Computer Science (LNCS), Springer,
Berlin.

 7 Chaos

7.1 What is Chaos?

In our daily life, one may say "that was complete chaos" to describe a situation of
extreme disorder, irregularity, or confusion. We may wonder what chaos has to do
with anything useful, particularly with intelligent computing. The scientific meaning
of the term chaotic system or chaos for short, which we use in this chapter, has one
distinctive characteristic among others. That is, chaos is a phenomena that has
deterministic underlying rules behind irregular appearances.

An over-simplified view of chaotic and other phenomena in this
world

For easy understanding, we may over-simplify the classification of phenomena into
the following categories in terms of two parameters: 1) the regularity of the
appearance on the surface; 2) the characteristics of the underlying rules.

Type of Phenomenon Appearance Underlying Rules
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1. Regular Regular Deterministic
2. Statistical Regular Probabilistic
3. Chaos Irregular Deterministic
4. Random Irregular Probabilistic

Examples of these phenomena are:

1. Regular: The motion of a pendulum of a grandfather's clock. If it is not regular,
it cannot serve as a device that keeps track of time.

2. Statistical: This is a type of phenomenon that looks regular on the surface, but is
a statistical result of many probabilistic events behind the scene. For example,
macroscopic motion of air flow may be regular, although microscopic motions
of the molecules in the air may be probabilistic.

3. Chaos: A pseudo-random number generator. More examples will be discussed in
this chapter.

4. Random: A sequence of lottery numbers. If there were any underlying rules, one
could increase odds of winning the lottery.

7.1 What is Chaos?

207

 Note that generally the boundary between deterministic chaos and probabilistic
random systems may not always be clear since seemingly random systems could
have deterministic underlying rules not yet found (perhaps only God knows at
present).

Typical features of chaos

As with many terms in science, there is no standard definition of chaos. The typical,
commonly-accepted features of chaos include:

1. Deterministic. It has deterministic rather than probabilistic underlying rules

which every future state of the system must follow.

2. Nonlinear. The underlying rules are nonlinear; if they are linear, it cannot be

chaos.

3. Irregular. The behavior of the system shows sustained irregularity. Hidden

order includes a large or infinite number of unstable periodic patterns or motions.
This hidden order forms the infrastructure of irregular chaotic systems -"order in
disorder" in short.

4. Sensitive to initial conditions. Small changes in the initial state of chaotic

systems can lead to radically different behavior in the final state. This "Butterfly
Effect," presents the possibility that even a slight perturbation of a butterfly
flapping its wings can dramatically affect whether sunny or cloudy skies will
dominate days later.

5. Long term prediction is practically impossible in most cases due to sustained

irregularity and sensitivity to initial conditions, which can only be known to a
finite precision.

We will discuss a more mathematical description of chaos in Section 7.5.
 Generally, nonlinear problems are difficult to solve analytically, except in a
limited number of cases. This is why many scientists and engineers have shied away
from nonlinear problems in general. Chaos can be said to be one of the hardest
nonlinear problems. Historically, the study of chaos started in mathematics and
physics. It then expanded into engineering, and more recently into information and
social sciences. Recently, there has been growing interest in the theoretical study and
applications of chaotic systems. There are several reasons for this recent interest in
chaos research. One is the importance of the study in many disciplines. Another key
element is the power, speed and memory capacity of easily accessible computer
hardware. Although the history of chaotic systems research is not new, it was the
computer revolution that gave life to their practical applications.

7 Chaos

208

Simple examples of chaos

In the following, we will see some examples to get a feeling of chaotic systems.

Example 1. Pseudo-random number generator

 A simple example of a chaotic system in computer science is a pseudo-random
number generator. The underlying rule in this case is typically a simple deterministic
formula. The resulting solutions, i.e., the pseudo-random numbers are, however, very
irregular and unpredictable (the more unpredictable, the better the random numbers).
We also note that a small change in the initial condition (seed) can yield a
significantly different sequence of random numbers. These random number
generators are chaotic but also periodic with certain periods. Such generators viewed
carefully yield the hidden order characteristic of chaos.
 To see chaotic behavior, let us use a simple generator of the form: xt+1 = cxt mod
m. If this equation is xt+1 = cxt, it would be linear, but taking the modulus makes it
nonlinear. For example, we can choose c = 16807 and m = 2147483647. (For more
on pseudo-random number generators, see D.E. Knuth, The Art of Computer
Programming, Vol. 2, Seminumerical Algorithms, 3rd Ed., 1997.)
 For illustration purposes, we will use xt+1 = 29xt mod 997. Fig. 7.1 shows two
sequences of numbers for this generator, where one sequence has a seed of 117 while
the other uses a slightly different value of 118. We note that although only the
discrete corner points of the graph are meaningful, it is a common practice to connect
these points with line segments for easier recognition of the sequences.

Fig. 7.1 Chaotic behavior for pseudo-random numbers.

7.1 What is Chaos?

209

Example 2. xt+1 = 2xt
2 - 1

When we start with x0 where 0 < x0 < 1, then xt will be confined between -1 and 1.
This simple nonlinear recurrence equation can demonstrate a chaotic behavior. Fig.
7.2 shows two sequences with x0 = 0.25 and x0 = 0.26.

Fig. 7.2 Chaotic behavior for xt+1 = 2xt
2 - 1, where x0 = 0.25 and 0.26.

Other examples.

While the above two examples are man-made chaotic systems, there are numerous
chaotic systems in nature. For example, normal brain activity may normally be
chaotic and pathological order might indeed be the cause of diseases such as epilepsy.
 It has been speculated that too much periodicity in heart rates might indicate disease.
 Perhaps the chaotic characteristics of the human body are better adapted to its
chaotic environment. It is even suspected that biological systems exploit chaos to
store, encode and decode information.
 Generally, for either a chaotic or non-chaotic system, a relationship between a
dependent variable xt vs. the independent variable time t, plotted on a diagram like
Fig. 7.1 or Fig. 7.2, is called a time series. When x is a continuous function of t, such
a diagram is called a time waveform or simply waveform. Analysis of time series
or waveform is of interest in many disciplines such as engineering, natural science,
medicine, and social science.

7 Chaos

210

7.2 Representing Dynamical Systems

In this section we discuss basic mathematical concepts used to represent and analyze
dynamical systems in general, for both chaotic and nonchaotic unless otherwise
specified. A dynamical system is a system that changes its state over time t.
Thereare two categories of dynamical systems: discrete and continuous. Many of
the concepts for discrete and continuous systems apply to both categories.

7.2.1 Discrete dynamical systems

The two examples in the previous section, xt+1 = cxt mod m and xt+1 = 2xt
2 - 1, are both

discrete dynamical systems. A discrete dynamical system describes the changes of
the system for discrete values of t, for example, for t = 0, 1, 2, An equation for a
discrete dynamical system such as, xt+1 = cxt mod m or xt+1 = 2xt

2 - 1, can generally be
represented as follows:

xt+1 = f(xt)

where f(xt) is some function of xt. This equation is called by various names such as a
recurrence equation, recurrence relation, difference equation, or a map - since
the equation maps the state at time t to the state at time t + 1. Time t is the independent
variable since its value does not depend on any other values; x in the above examples
is the dependent variable.
 The above recurrence equation can further be generalized as xt+1 = f(xt, t); that is,
function f explicitly includes the independent variable t. Such a recurrence equation
is called nonautonomous. For example, xt+1 = txt

2 - 1 is an example. On the other
hand, the earlier form of a recurrence equation xt+1 = f(xt), that is, f is a function of
only xt and not explicitly of t, is called autonomous. We will consider autonomous
and nonautonomous systems in the next subsection for continuous dynamical
systems, but we will mostly discuss autonomous systems in this chapter.
 Any function xt = φ(t) that identically satisfies the recurrence equation xt+1 = f(xt)
is called a solution. A solution that satisfies the recurrence equation together with a
specific initial condition, say, x = x0 at t = 0, is called a particular solution. A
solution x = φ(t) that identically satisfies the recurrence equation without specific
initial condition is called a general solution, to distinguish it from a particular
solution.
 Steady state refers to the asymptotic behavior of the solution as time approaches
infinity. A system starts with an initial condition at time t = 0, progresses through the
transient states, then may reach its steady state. We note that when we say that time
approaches infinity, we tend to think the time is very long, for example, a billion
years or more. However, usually this is not the case. For example, when the transient
states are in the order of milli-seconds, the system will reach its steady state within
a fraction of a second That is, infinity in this case means a fraction of a second.

7.2 Representing Dynamical Systems

211

Multi-dimensional discrete dynamical systems

The two examples for Figs. 7.1 and 7.2 are one-dimensional, since there is only one
dependent variable x. When a system is described by two dependent variables, x and
y, it is a two-dimensional discrete dynamical system. A system of two simultaneous
recurrence equations, xt+1 = 2xt

2 - 1, yt+1 = xtyt, is an example. A three-dimensional
discrete dynamical system has three dependent variables, x, y, and z. We can further
extend these to an n-dimensional discrete dynamical system, having n dependent
variables, x1, x2, ..., xn, or x(1), x(2), ..., x(n). (Hereafter, we will use x1, ..., rather than
x(1),..., notation. Note that for a general n or often for n ≥ 4, these subscripted or
superscripted expressions are used since the number of letters is limited. On the other
hand, for up to n = 3, x, y, and z are often used since they are easier to understand than,
e.g., x1, x2, and x3.)
 By extending a one-dimensional system, xt+1 = f(xt), to an n-dimensional system,
we have:

x1, t+1 = f1(x1, t, x2, t, ..., xn, t)

x2, t+1 = f2(x1, t, x2, t, ..., xn, t)

. . .

xn, t+1 = fn(x1, t, x2, t, ..., xn, t)

This set of simultaneous recurrence equations can be represented more compactly by
using two vectors, xt = (x1, t, x2, t, ..., xn, t) and f(xt) = (f1(xt), f2(xt), ..., fn(xt),), as,

xt+1 = f(xt)

Linearity and nonlinearity

Since chaos is a science of nonlinear systems, we need to clearly understand what is
linear and what is not. A recurrence equation is linear if each term is in form of α(t)
× x, where α(t) is any function of independent variable t, including a constant, and x
is a dependent variable. The dependent variable x can be xt, yt, x1, t, x2, t, etc. In words,
a recurrence equation is linear if each term is one dependent variable to its first power,
possibly multiplied by a constant factor or by any function of the independent
variable. All others are nonlinear. Common forms of nonlinear include: a power of
polynomial of x, where the power can be real or negative, e.g., x2, x0.5 = √x, x-1 = 1/x;
a function of x, such as sin x, log x, ex and taking modulus; or a "cross term," such as
xy, for multi-dimensional systems. Here are some examples of linear and nonlinear
systems:

Linear examples.

1. xt+1 = e-txt - sin t

2. xt+1 = 2xt - 1

7 Chaos

212

yt+1 = xt - yt

Nonlinear examples.

1. xt+1 = xt

2 - 1

2. xt+1 = 2 - 1/xt

yt+1 = xtyt

7.2.2 Continuous dynamical systems

A continuous dynamical system describes the dynamic nature of the system for
continuous values of t, using the time derivatives of the dependent variables. The
dependent variables can be represented as x, y, z, or x1, x2, ..., xn. When we want to
explicitly indicate these dependent variables are functions of time t, we can write
them as: x(t), y(t), z(t); xt, yt, zt; x1(t), x2(t), ..., xn(t); or x1,t, x2,t, ..., xn,t. We will
represent the first and second time derivatives by overdots as dx/dt = x and d2x/dt2
= x , and the higher time derivatives in form of dnx/dtn = x(n). Here are some examples
of continuous dynamical systems:
1. x = sin t first-order, one-dimensional
2. x + a x + sin x = 0second-order, one-dimensional
3. x = y
 = - ay - sin x first-order, two-dimensional y

As in the case of discrete systems, time t is the independent variable and x, y, (and z,
so on, for higher dimensions) represent the dependent variables. From study of
differential equations, we recall that the order of a differential equation is the order
of the highest derivative which occurs. In the second example, the highest order
derivative is x , which is the second order.
 In general, a first-order, one-dimensional continuous dynamical system can be
described by:

x = f(x, t)

where f(x, t) is a some function of x and t.
 The notes for solution and steady state in the previous subsection for discrete
systems also apply to continuous dynamical systems. That is, any function x = φ(t)
that identically satisfies the differential equation x = f(x, t) is called a solution. A
solution that satisfies the differential equation together with a specific initial
condition, say, x = x0 at t = 0, is called a particular solution. A solution x = φ(t) that
identically satisfies the differential equation without specific initial condition is
called a general solution, to distinguish it from a particular solution. Steady state
refers to the asymptotic behavior of the solution as time approaches infinity. A
system starts with an initial condition at time t = 0, goes through the transient states,
then may reach its steady state.

7.2 Representing Dynamical Systems

213

Multi-dimensional continuous dynamical systems

A first-order, two-dimensional system is an extension of the one-dimensional as,

x = f1(x, y, t)
y = f2(x, y, t)

For a further extension to an n-dimensional system, we have,

x 1 = f1(x1, x2, ..., xn, t)
x 2 = f2(x1, x2, ..., xn, t)

 . . .
x n = fn(x1, x2, ..., xn, t)

This set of simultaneous differential equations can be represented more compactly by
using two vectors, x = (x1, x2, ..., xn) and f(x, t) = (f1(x, t), f2(x, t), ..., fn(x, t)), as,

x = f(x, t)

where = (x x 1, x 2, ..., x n). Any function x = φ(t) = (φ1(t), φ2(t), ..., φn(t)) that
identically satisfies the differential equation = f(x, t) is called a solution. Other
concepts, such as particular and general solutions and steady state, can also be
extended similarly to higher dimensions.

Linearity and nonlinearity

The notes for linearity and nonlinearity for discrete systems also apply to continuous
systems, with one change - "a dependent variable" in discrete case is replaced by "a
dependent variable or its (any order) derivative." That is, a system of differential
equations is linear if each term is in the form of α(t) × x, α(t) × x , α(t) × x , and so
on, where α(t) is any function of independent variable t, including a constant, and x
is a dependent variable. All others are nonlinear. Here are some examples of linear
and nonlinear systems:

Linear examples.

1. x = x - sin t
2. x + a x + sin2t⋅x = b
3. x = y
 = -ay - x y

Nonlinear examples.

1. x = x2 - sin t
2. x + a x + sin x = 0

7 Chaos

214

3. x = y
 y = -axy

Reducing a high-order differential equation to a set of first-order
differential equations

We note that an m-th order, one-dimensional dynamical system can always be
reduced to a system of first-order, m-dimensional differential equations by
introducing new dependent variables. For example, a second-order, one-dimensional
system: x + a x + sin x = 0 can be reduced to first-order, two-dimensional: x = y
and = - ay - sin x by introducing a new dependent variable y. More generally, an
m-th order, one-dimensional dynamical system can be described by,

y

x(m) = f(x, , , ..., x(m-1), t)

We introduce new dependent variables as: y1 = x, y2 = x , y3 = x , ..., ym = x(m-1). Then
the reduced set of first-order, m-dimensional differential equations are:

y 1 = y2

y 2 = y3

. . .
y m-1 = ym

(and from the original equation)

y m = f(y1, y2, ..., ym, t)

 This technique can further be extended for reducing a set of high-order,
multi-dimensional differential equations to a system of first-order, multi-dimensional
differential equations by introducing new dependent variables for each of the original
variables.

Autonomous and nonautonomous dynamical systems

A dynamical system = f(x), that is, f is a function of only x and not explicitly of t,
is called autonomous; otherwise, that is = f(x, t), nonautonomous. Note that f(x)
of an autonomous system is still implicitly a function of t, since f(x) is a function of
x, and in turn x is a function of t.

x
x

 We are often interested in a special case of a nonautonomous dynamical system
called time-periodic, where f is a cyclic function in terms of t, that is, f(x, t + T) = f(x,
t) for T > 0. Note that if f(x, t + T) = f(x, t), then f(x, t + 2T) = f(x, t) since f(x, t + 2T)
= f(x, (t + T) + T) = f(x, (t + T)) = f(x, t). Similarly, f(x, t + 3T) = f(x, t), f(x, t + 4T)
= f(x, t), and so on. The smallest such T is called the minimal period. A
time-periodic nonautonomous system can always be reduced to an autonomous
system of one additional dimension by employing a trick as follows. Define a new
dependent variable xn+1 as:

7.2 Representing Dynamical Systems

215

xn+1 = (2π/T)t or equivalently t = (T/2π)xn+1

Then the original set of equations reduces to:

x 1 = f1(x1, x2, ..., xn,
2
T
π

 xn+1)

x 2 = f2(x1, x2, ..., xn,
2
T
π

 xn+1)

 . . .

x n = fn(x1, x2, ..., xn,
2
T
π

 xn+1)

 x n+1 = 2
T
π

Or, using vector x = (x1, x2, ..., xn), this set can be represented more compactly as
(Note that x is a vector while xn+1 is a scalar):

x = f(x,
2
T
π

 xn+1)

x n+1 = 2
T
π

 Suppose that the initial condition for the original nonautonomous system is x(t0)
= x0. Then the initial condition for the reduced autonomous system can be chosen as:
at new t = 0, x(0) = x0 and xn+1(0) = (2π/T)t0.
 Since f is cyclic in terms of t with the period T, f is cyclic in terms of xn+1 with the
period 2π. Hence, xn+1 can be represented in the interval of 0 ≤ xn+1 < 2π by xn+1 =
2πt/T mod 2π. Using this transformation, results for autonomous systems can be
applied to the time-periodic nonautonomous systems.
 We note that a nonautonomous system which is not time-periodic can also be
reduced to an autonomous system by xn+1 = (2π/T)t. However, the solution is
necessarily unbounded, that is xn+1 → ∞ as t → ∞, hence many theoretical results
concerning the steady-state behavior of autonomous systems do not apply. (For
more, see Parker, 1989.) In the following, we will primarily discuss autonomous
systems, unless otherwise stated.

Example 3. A forced damped pendulum

The equation of motion for a forced damped pendulum (Fig. 7.3) can be expressed in
the following form.

x + a x + b sin x = c sin(2
T
π t)

7 Chaos

216

Fig. 7.3. A forced damped pendulum

where x is the only dependent variable representing the angle, and a, b, c, and T are
parameters. (x, rather than θ, is used to be consistent with the above general notation.)
 In this equation, the first term represents acceleration (inertia), the second term the
damping effect due to friction at the pivot, the third term gravity, and the right-hand
side term an external force of sinusoidal torque applied at the pivot. This equation is
second order since the term x , and nonautonomous since the right-hand side
expression explicitly contains time t. We will reduce this equation to a set of
first-order autonomous equations in two steps as follows:

Step 1. Second-order to first-order

Introduce a new variable y defined as y = x .Then the original equation
becomes a set of two first-order equations:

 x = y

 = -ay - b sin x + c sin(y 2
T
π t)

Step 2. Nonautonomous to autonomous

Define a third variable z as z = (2π/T)t. Then the above set of two
equations reduces to:

 x = y

y = -ay - b sin x + c sin z

 = 2π/T z

Relationships between Discrete and Continuous Dynamical
Systems

For certain cases, we can establish relationships between discrete and continuous

7.2 Representing Dynamical Systems

217

dynamical systems, although the corresponding counterparts represent different
systems.

Discrete to continuous

Example 4. Compound interest

Let annual interest be i, and interest be compounded for every period h, which is a
fraction of one year. For example, if the annual interest is 8%, i will be 0.08; if h =
0.25, it means that interest is compounded every quarter or three months. Let xp be
a deposit amount at time period p and xp+1 be the amount after one period. xp+1 then
is the sum of the principal xp at the beginning of the period plus interest during this
period, ihxp. Hence, the discrete difference equation is:

xp+1 = (1 + ih)xp

Given an initial condition, x0 at p = 0, we have xp = (1 + ih)px0, the amount after p
periods. If we want to show the solution in terms of the number of years t, where t =
ph, we have xt = (1 + ih)t/hx0.
 We now determine a continuous counterpart of the above difference equation in
form of a differential equation. As before, let interest be compounded for every
period h, and xt be the amount at time t (in terms of the number of years). For xt+h, the
amount after one period of time length h starting from xt, we have:

xt+h = (1 + ih)xt

It follows: (xt+h - xt)/h = ixt. We consider reducing the compounding period to a very
small amount of time; that is, interest is compounded every day, second,
microseconds, and so on, to eventually zero, which means interest is compounded
continuously (although no bank practices such continuous compounding). This
corresponds to taking the limit of h → 0. According to calculus, lim h→0 (xt+h - xt)/h is
the definition of x t. Hence, we have:

x t = ixt

With understanding that x is a function of t, we can also write the above as:

x = ix
This is a continuous version of the problem. The meaning of this differential equation
is that the rate of increase of the deposit amount is equal to the interest rate times the
deposit amount. As before, given an initial condition, x0 at t = 0, we have xt = eitx0, the
amount after t years.
 In general, given a recurrence equation, compute xt+1 - xt, the increase of x for unit
time. Roughly, this corresponds to x t, the increasing rate of x. For example, in the
above example, xt+1 - xt = ixt represents the increase of interest for one year, and this
corresponds to x t. The underlying (solution) function xt for continuous values of t
must be differentiable to make this correspondence. More precisely, we must
compute lim h→0 (xt+h - xt)/h as in the above example.

7 Chaos

218

Continuous to discrete

Given a continuous system, there are various ways to derive a discrete counterpart.
Note that generally the continuous and discrete counterparts represent different
systems. (For more details, see, e.g., Ott, 1993, pp. 9-10, and Parker and Chua, 1989,
Chapter 2.)

Method 1. Select discrete time intervals, tk = t0 + kT, k = 0, 1, 2, Using the given
continuous system of equations and an initial condition at t= t0, get a solution for t =
t1. Using the given continuous system of equations and the solution just obtained as
a new initial condition at t = t1, get a solution for t = t2, and so on.

Method 2. Poincaré maps. Essentially, consider an (n - 1)-dimensional
hyper-surface in the original n-dimensional state space. Pick discrete consecutive
intersections of the solution (orbit) of the original continuous equations and the
hyper-surface. Recall that the term “hyper” is used for a space dimension that is more
than normal. For example, a hyper-plane or hyper-surface is an imaginary plane or
surface whose actual dimension is three or more.

7.3 State and Phase Spaces

The variables xt, yt, or x, y, and so on, are called the state variables since they
describe the states of the dynamical systems. A space made up of the state variables
is called a state space. For example, for a two-dimensional system with the state
variables x and y, a state space (or a state plane, particularly for a two-dimensional
case) may have x for its abscissa, and y for its ordinate. Or, the two-dimensional
space does not necessarily need to be represented by the Cartesian coordinate; it can
be represented by, for example, a polar coordinate. Given a specific problem, one
coordinate system is often more convenient than other systems.
 A space made up of the state variables and their derivatives is called a phase space.
In common practice the terms state and phase spaces are often used interchangeably.
We will also follow this convention.
 We can extend these spaces to higher dimensions. Since we live in
three-dimensional space, when we go beyond the third dimension, we have a harder
time drawing, visualizing, or understanding space. We often use our imagination to
extend concepts in lower dimensions, such as line, surface, etc., to higher dimensions.
Another way is to accept such a space as an abstract, formal extension of
lower-dimensional spaces. Sometimes lower dimensional state and phase spaces can
also be considered as abstract mathematical representations without graphical
interpretation. In this section, we will study the behavior of dynamical systems in
state and phase spaces.

7.3.1 Trajectory, Orbit and Flow

In a state (or phase) space, a path followed by a dynamical system as time progresses

7.3 State and Phase Spaces

219

is called a trajectory or orbit. A point on a trajectory corresponding to a specific
time is called a state point or phase point. Fig. 7.4 depicts an example of a trajectory.
Mathematically, a trajectory represents the path of the solution of a dynamical system,
starting from a specific initial condition, in the state space. Some authors use "orbit"
for discrete and "trajectory" for continuous systems. A flow is the group of
trajectories generated by all the initial conditions in the state space. A flow is
analogous to the paths followed by a flowing fluid.

Fig. 7.4. An example of a state space and a trajectory

Example 5. A linearized loss-free, unforced pendulum

The equation of motion for this system is described by:

x + k2 sin x = 0

where k is a positive constant. This is a special case of the forced damped pendulum
we have seen before (Fig. 7.3). In the above, the first term represents acceleration,
and the second term gravity. Note that the two terms for damping due to friction and
external force are dropped.

Fig. 7.5 A loss-free, unforced pendulum

7 Chaos

220

 When |x| is small we can employ an approximation of sin x ≈ x, and the equation
of motion becomes the following linear version.

x + k2x = 0

By introducing y = x , this equation reduces to:

x = y
y = - k2x

The general solution is x = a cos (kt + b) and y = -ak sin (kt + b). An initial condition
can be taken as holding, then releasing the pendulum at x = x0 at the beginning, that
is, x = x0 and x = y = 0 at t = 0. The particular solution corresponding to this initial
condition is:

x = x0 cos (kt)
y = -kx0 sin (kt)

Fig. 7.6 (a) depicts x = x0 cos (kt), that is, how x changes over time. From x = x0 cos
(kt) and y = -kx0 sin (kt), we have (x/x0)2 + (y/kx0)2 = 1. That is, the solution or
trajectory is an ellipsoid in the phase space as is shown in Fig. 7.6 (b). Note that in
Fig 7.6 (b), time is implicitly included; for example, the point x = x0 and y = 0
corresponds to t = 0, then periodic afterwards as, t = 2π/k, 4π/k, Finally, Fig. 7.6
(c) shows a flow in the phase space, representing a set of solutions that corresponds
to different initial conditions for x0.

 (a) (b) (c)

Fig. 7.6 Solution of a linearized loss-free, unforced pendulum. (a) A time waveform for x.
(b) A phase space of x and y = x and a trajectory. (c) A flow

The basic concepts for representing dynamical systems by differential equations,
their solutions and trajectories in the phase spaces, and flows discussed in the above
example are the same for other problems. Determining solutions and drawing

7.3 State and Phase Spaces

221

trajectories, however, for certain problems can be much harder. In the following, we
often skip some details of solutions for brevity.
 In general, there are advantages and disadvantages for the two types of
representations - time waveform (or series) and phase space. In the time waveform
representation, since time is explicit, the behavior of state variables as time changes
is clear. But, the relationships among the state variables and their derivatives are not
obvious. The advantage and disadvantage for the phase space representation are just
the opposite of the time waveform. In a phase space, time is not a part of the
coordinates and it is included only implicitly in the phase space. Hence, a static
diagram of a trajectory, such as Fig. 7.6 (b), does not fully illustrate the dynamic
nature of the system. To understand the dynamic nature, we need a good imagination
of a video where a phase point moves along the trajectory as time passes. On the
other hand, the phase space representation often reveals characteristics which are not
transparent from the time waveform.

7.3.2 Cobwebs

Cobwebs can be drawn for discrete dynamical systems, and they are somewhat
analogous to phase spaces for continuous systems. That is, time is implicit in
cobwebs; the behavior of state variables, which may not be evident from time series,
may be revealed through cobwebs. Cobwebs are different, however, from phase
spaces since the ordinates of cobwebs do not represent derivatives. Drawing
cobwebs is straightforward and can be described as follows:

An algorithm for drawing a cobweb

Given: a discrete dynamical system xt+1 = f(xt) and an initial condition xt = x0 at
t = 0.

(Initial setup before cobweb drawing) (See Fig. 7.7 (a))
Prepare a two-dimensional graph in which: Select xt for abscissa and xt+1 for ordinate.
Draw a graph of xt+1 = f(xt) and a 45-degree line of xt+1 = xt in the plane. Mark the
initial condition xt = x0 on the abscissa.

(Iteration) (See Fig. 7.7 (b))

Repeat the following three steps for t = 0, 1, 2, ..., for necessary time intervals:

Step 1. Starting from xt on abscissa, draw a vertical line until it intersects with the

graph of xt+1 = f(xt). The ordinate of the intersection represents the value
of xt+1.

Step 2. Starting from the intersection, draw a horizontal line until it intersects

with the 45° line of xt+1 = xt. The abscissa of the new intersection now
represents the value of xt+1 (since xt = xt+1).

Step 3. Advance t by 1, and go back to Step 1.

7 Chaos

222

 For easy recognition, the cobweb in Fig. 7.7 (b) is shown as bold line segments; if
they are thin, they would look more closely to a real cobweb.

 (a) (b)

Fig. 7.7 Drawing a cobweb. (a) Initial setup. (b) Iteration steps for a cobweb, represented by
bold line segments.

7.4 Equilibrium Solutions and Stability

If the value of a solution of a dynamical system, either for discrete or continuous,
stays as a constant, it is called an equilibrium solution or a fixed point. The term a
"fixed point" is often used in graphical context, such as an equilibrium solution in a
state/phase space or a cobweb. However, these two terms, equilibrium solution and
fixed point, are often used interchangeably and we will follow this convention.
 There are two kinds of equilibrium solutions: stable and unstable. An equilibrium
solution is stable if any solution in the near neighborhood of the equilibrium solution
gets closer and closer to the equilibrium solution as time advances. A stable
equilibrium solution or fixed point is also called an attractor, particularly in
graphical context. This is because the flow is toward the fixed point. An equilibrium
solution is unstable if any solution in the near neighborhood of the equilibrium
solution tends to get far, at least a certain distance, from the equilibrium solution as
time advances. An unstable fixed point is also called a repeller. For graphical
representations, we will use solid black dots for stable equilibrium solutions, while
open circles for unstable equilibrium solutions.

Discrete dynamical systems

Given a one-dimensional discrete dynamical system described by xt+1 = f(xt), suppose
that a specific value of x, say, xq satisfies the following:

f(xq) = xq

7.4 Equilibrium Solutions and Stability

223

Then xq is called an equilibrium solution of the discrete dynamical system.
 The meaning of the equilibrium solution is as follows. Suppose that we start with
an initial x0 as xq. Then x1 = f(x0) = f(xq) = xq, x2 = f(x1) = f(xq) = xq, and so on, hence,
xt = xq for any t. In words, the solution xq stays the same as time changes - this is an
equilibrium solution.
 Extensions to higher-dimensional dynamical systems described generally by xt+1
= f(xt) work in the same fashion. That is, if a particular solution xq satisfies f(xq) =
xq, then xq is an equilibrium solution.

Example 6. Equilibrium solutions of a one-dimensional, linear discrete dynamical
system

Consider a dynamical system,

xt+1 = f(xt) = axt + b

where a ≠ 0 and b are constants. An equilibrium solution can be found by solving

xq = axq + b

This yields xq = b/(1 - a), assuming that a ≠ 1. (If a = 1, we have a trivial case where
the original equation becomes xt+1 = xt + b. An equilibrium solution satisfies xq = xq
+ b, which implies b = 0 and xq can be any value.)
 To determine whether the equilibrium solution xq = b/(1 - a) is stable or unstable,
we can solve the original recurrence equation as follows. By applying the recurrence
equation for t, t - 1, t - 2, and so on, repeatedly, we have:

 xt = axt-1 + b
 = a(axt-2 + b) + b
 = a2xt-2 + ab + b
 = a2(axt-3 + b) ab + b
 = a3xt-3 + a2b + ab + b
 = . . .

 . . .
 = atxt-t + at-1b + at-2b + . . . + ab + b
 = atx0 + b(at-1 + at-2 + . . . + a + 1)

(By geometric progression formula we have:)

 = atx0 +
()
()
1

1

tb

b

a

a

−

−

Incidentally, this solution can also be proved to be correct by using mathematical
induction. Using this result, we have

7 Chaos

224

 |xt - xq| = atx0 +
()
()
1

1

tb a

b a

−

−
 -
()1

b

a−
 = atx0 -

()1

tba
a−

 = |at(x0 - xq)| = |a|t |x0 - xq|

(The last equality holds since generally |pq| = |p||q|.) The behavior of |xt - xq| depends
on the value of a, and can be classified into the following three cases.

1) |a| < 1. Stable, since lim t→∞ |a|t = 0, and consequently lim t→∞ |xt - xq| = 0.
2) |a| > 1. Ustable, since lim t→∞ |a|t → ∞, and consequently lim t→∞ |xt - xq| → ∞.
3) a = -1. Then x1 = -x0 + b, x2 = -x1 + b = -(-x0 + b) + b = x0. Hence, x1 = x3 = x5 = . . .

= -x0 + b and x2 = x4 = . . . = x0. An oscillating solution.

The following Fig. 7.8 shows a cobweb for a special case where, a = -0.5, b = 3, and
x0 = 10. The fixed point is xq = 2 and it is stable.

Fig. 7.8.A cobweb for a special case of a one-dimensional, linear discrete dynamical system,
where xt+1 = -0.5xt + 3 and x0 = 10. The fixed point is xq = 2 and it is stable.

 Note that we have exactly one equilibrium solution in the above Example 6, since
the recurrence equation xt+1 = axt + b is linear, and consequently an equation for an
equilibrium solution, xq = axq + b, is also linear. Generally, a nonlinear dynamical
system will have multiple equilibrium solutions. For example, a quadratic system,
xt+1 = axt

2 + bxt + c, will have two equilibrium solutions (unless the solutions are
degenerated or complex numbers). A cubic system will have three equilibrium
solutions, and so on. The more nonlinear the system is, the more equilibrium
solutions and the harder to determine them.

Example 7. Loan payment

7.4 Equilibrium Solutions and Stability

225

Let the loan balance at month t = xt, monthly interest rate = r, and monthly payment
= p. Then the balance at next month t + 1 will be the balance at t plus the interest for
the month minus the payment, that is:

xt+1 = (1 + r)xt - p

where r, p > 0. This is a special case of previous Example 6, in which a = 1 + r > 1
and b = -p. As before, an equilibrium solution can be found by solving xq = (1 + r)xq
- p, which yields xq = p/r. The meaning of this equilibrium solution is that if one
makes a monthly payment of p = rxq, which is exactly the same amount as interest,
then the principle stays the same.
 In Example 6, we found that when |a| < 1, the equilibrium solution is unstable.
This can be easily understood by considering the behavior of xt in the neighborhood
of xq = p/r. When xt < xq = p/r, that is p > rxt, the payment is greater than interest, so
the balance xt will become smaller and smaller over time. This is a usual situation to
return a loan. Eventually xt will become zero, which means the loan is paid off, then
payment will be stopped. For mathematical consideration, if payment is not stopped,
xt → -∞ or |xt - xq| → ∞ as t → ∞. When xt > xq = p/r, that is p < rxt, the payment is
smaller than interest, so the balance xt will become greater and greater over time. So,
xt → ∞ or |xt - xq| → ∞ as t → ∞. In both cases, either xt < xq, or xt > xq, a solution tends
to get far from the equilibrium solution. Hence, the equilibrium solution is unstable
and it is a repeller. Fig. 7.9 is the time series of the problem. Fig. 7.10 depicts
cobwebs of the problem, one with an initial condition x01 < xq, and the other with an
initial condition x02 > xq.

Fig. 7.9.Time series of loan payment. The fixed point xq = p/r is unstable; a solution tends to
get far from xq.

Continuous dynamical systems

Given a one-dimensional, continuous autonomous dynamical system described by x
= f(x), suppose that a specific value of x, say, xq satisfies the following:

x = f(xq) = 0

7 Chaos

226

Fig. 7.10 Cobwebs of loan payment. One cobweb with an initial condition x01 < xq, and the
other with an initial condition x02 > xq. xq is an unstable fixed point.

Then xq is called an equilibrium solution or a fixed point of the continuous
dynamical system. The meaning of the equilibrium solution is that when we start with
an initial x0 as xq, x stays as xq for all subsequent t, since the time derivative of x with
respect t is zero, that is, no change for x.
 Extensions to higher-dimensional dynamical systems described generally by =
f(x) work in the same fashion. That is, if a particular solution xq satisfies f(xq) = 0,
then xq is an equilibrium solution or a fixed point.

Example 8. Equilibrium solutions of a one-dimensional continuous dynamical
system

Consider a dynamical system

x = f(x) = (x2 - 1)(x - 2)

Fig. 7.11 shows a phase space of the system. There are three fixed points in this
system, corresponding to the three solutions for f(x) = (x2 - 1)(x - 2) = 0, namely, x =
-1, 1, and 2. When, for example, we start with x0 equal to exactly -1, then xt will stay
-1 forever.
 To determine the stabilities of these fixed points, let us interpret x as a position of
a point on the abscissa, and x is the velocity of the point. When x is positive, i.e.,
the graph is above the abscissa, the point will move in the positive direction of x, or
to the right on the x-axis. Similarly, when x is negative, i.e., the graph is below the
abscissa, the point will move in the negative direction of x, or to the left on the x-axis.
In addition, the higher the value of | x |, the faster the velocity. The arrows on the
abscissa in Fig. 7.11 show the directions and the magnitudes of the velocities at
various values of x. For example, a point placed at slightly smaller than x = 2, say, x

7.5 Attractors

227

= 1.99, will start moving slowly to the left, accelerate further to reach its highest
(negative) velocity at x = 1.5, keep moving to the left, and eventually arrive at x = 1.
A point placed at slightly larger than x = 2, say, x = 2.01, will start moving slowly to
the right, accelerate further and further to fly away to infinity. Hence, the fixed point
x = 2 is unstable. Similarly, we see that x = -1 is unstable, while x = 1 is stable.

Fig. 7.11.A phase space illustrating fixed points and their stabilities of a dynamical system
x = f(x) = (x2 - 1)(x - 2). Arrows on the abscissa show the directions and magnitudes of

velocities, x , at various points of x.

7.5 Attractors

In the previous section, we learned that a stable equilibrium solution or a stable fixed
point is called an attractor. The examples we have seen in the previous section are the
simplest type of attractors, called fixed-point attractors. In general, an attractor is
a set of points or a region in the state space where solutions that start in its
neighborhood eventually converge to that set as time approaches infinity. Every
attractor must not include another attractor as a subset, that is, every attractor must be
minimal. In case of a fixed-point attractor, the set is a single point. There are other
types of attractors, where an attractor is not a point; for example, it can be a loop or
a set of confined endless spirals.
 In this section, we study four types of attractors: 1) fixed point, 2) periodic, 3)
quasi-periodic, and 4) chaotic, in increasing order of complexity. In most of the
graphical representations, we focus the qualitative characteristics of the
systembehaviors rather than quantitative, since the former is what we care about in
many cases. Also in many cases resulting solutions are given without derivations
since the process either require extensive analytical calculations or rely on numeric
computations.

7 Chaos

228

7.5.1. Fixed-point attractors

In the previous section, we have seen examples of fixed-point attractors. In these
examples, solutions that start in the neighborhood of a fixed point have the fixed
point as a steady-state solution. We will see another example of fixed-point attractors
and introduce a few more related concepts.

Example 9. A damped pendulum

 This is a special case of Example 3 for a forced damped pendulum, where the
right-hand side term for external force is dropped. The equation of motion can be
described as:

x + a x + k2 sin x = 0

Fig. 7.12 depicts a phase space of this system.
 As before, x represents the angle of the pendulum at the pivot and y = x the
angular velocity. The origin is a fixed-point attractor; any solutions that start in the
neighborhood of this fixed point will eventually converge to this point. Physically,
this equilibrium solution represents that the pendulum comes to rest at its vertical
position, that is, x = 0 and x = 0, due to loss of energy from the friction. Generally,
the set of points in phase space that are attracted to the same attractor is called the
basin of attraction. The shaded region in Fig. 7.12 represents the basin of attraction
to the origin. Similarly, there are other basins of attraction corresponding to other
fixed points.
 The point at x = π and x = 0, denoted by ⊗, is called a saddle point. It is a
combination of an attractor and a repeller. The trajectories that are going towards the
point are stable, while those going away are unstable. Imagine a horse saddle.

7.5.2. Periodic attractors

For a discrete dynamical system, xt+1 = f(xt), if a solution xt = φ(t) satisfies:

φ(t + T) = φ(t)

for some fixed integer T > 0, then the solution φ(t) is called periodic. The smallest
such T is called the period of the solution. Similarly, for a continuous dynamical
system, = f(x), if a solution x = φ(t) satisfies φ(t + T) = φ(t) for some constant T
> 0, then φ(t) is called periodic. The smallest such T is called the period of the
solution.

x

For either discrete or continuous system, a periodic solution is isolated if there is no
other periodic solution in the neighborhood. An isolated periodic solution is also
called a limit cycle.
 Certain dynamical systems have periodic rather than fixed point solutions as their
steady-state solutions. In a phase space, this type of solution forms some form of a
loop, such as a circle, ellipsoid, or deformed ellipsoid, etc., instead of a point. All

7.5 Attractors

229

solutions that start at a point on the loop will move around on this loop. All solutions
that start in the neighborhood of such a loop will eventually wind up on this loop and
eventually move around the loop. This type of a steady-state solution is called a
periodic attractor.

Fig. 7.12 A phase space for a damped pendulum system with a = 0.4 and k = 1.

Example 10. The van der Pol equation

A popular example of this periodic attractor is the following van der Pol equation of
a continuous oscillatory dynamical system.

x + ε(x2 - 1) x + x = 0

where ε is a positive constant. The limit cycle depends on the value of the positive
parameter ε. For example, when ε is small (e.g., ε = 0.1), the limit cycle is near a
circle.
 Fig. 7.13 shows a phase space for ε = 1. The heavy curve represents the limit cycle.
 Neighborhood solutions represented by thin curves approach the limit cycle as time
advances. The second term, ε(x2 - 1), is a nonlinear damping term. When |x| > 1, this
term is positive and acts as ordinary damping, causing a decay of the motion. When
|x| < 1, the term becomes negative, and it acts as "negative damping" or positive
pumping, exciting the motion. Thus, a solution that starts at a large value of x will be
contracted to the limit cycle. Similarly, a solution that starts at a small value
(excluding the origin, which is an unstable equilibrium solution) of x will be
expanded toward the limit cycle. The system eventually settles to the steady state
limit cycle, where the ordinary and negative damping effects balance over one
period.

7 Chaos

230

7.5.3. Quasi-periodic attractors

Steady state solutions for some dynamical systems are neither fixed points nor
periodic as discussed above, but referred to as quasi-periodic. The name
quasi-periodic indicates a solution that may appear periodic at glance, but the
trajectory never repeats itself.

Fig. 7.13. Phase space for the van der Pol equation, with ε = 1. The heavy curve shows the
limit cycle.

 To illustrate quasi-periodic solutions, we introduce a new two-dimensional state
space representation called torus (Fig. 7.14). We have been using the Cartesian
coordinates for state spaces - for example, for two-dimensional space, the abscissa
for x and the ordinate for y. In the torus, the two dependent variables on time t are
angles denoted as θ1 and θ2. We could use x and y instead of θ1 and θ2 as state
variables, but since they are angles rather than distance, the latter would be more
descriptive. A point in this space is a point on the surface of the torus determined by
values of θ1 and θ2. θ1 is a vertical angle measurement analogous to longitude and θ2
is a horizontal angle measurement analogous to latitude. Using the same analogy,
there are outer and inner equators on the torus. The circle on the top of the torus
would be the "north pole." Note that the north pole on the torus is not a point but a
circle. Similarly, the bottom circle would be the "south pole."
 We may arbitrarily choose the front point on the outer equator (i.e., the closest
point to us) as the origin, θ1 = 0 and θ2 = 0. Then along the outer equator, the right,
back, and left points correspond to θ2 = π/2, π, and (3/2)π, respectively. At any
vertical cross section, θ1 = 0, π/2, π, and (3/2)π correspond to the outer equator, north
pole, inner equator, and south pole, respectively.
 When a solution of a dynamical system, θ1(t) and θ2(t), and an initial condition, for

7.5 Attractors

231

example θ1 = 0 and θ2 = 0 at t = 0, are given, we can draw the trajectory on the surface
of the torus. We can imagine a point starts at the origin, θ1 = 0 and θ2 = 0, then moves
along the trajectory as time advances.

Case study. A simple dynamical system in the torus

To understand quasi-periodic, we will study the following simple example.

Fig. 7.14. The torus, a two-dimensional state space representation.

θ 1 = ω1

θ 2 = ω2

where ω1 and ω2 are positive constants. Since θ 1 and θ 2 represent angular velocities,
a point in the system moves with constant angular velocities of ω1 and ω2. Note that
to determine a trajectory of the system, only the ratio, r = ω1/ω2, is needed, rather
than specific values of ω1 and ω2. Specific values of ω1 and ω2 will affect only how
fast the point moves on the trajectory, not the shape of the trajectory. Geometrically,
the ratio, r = ω1/ω2, represents the "angular slope" of the trajectory. In the following,
we will see three cases in terms of r: 1) r = 1, 2) r is a rational number, and 3) r is an
irrational number. The first and second cases are essentially the same, but we start
with the simplest case 1 for easy understanding. The last case is the one for
quasi-periodic.

1. r = ω1/ω2 = 1. In this case, the solution is a single closed loop. For example, let
us assume ω1 = ω2 = (π/2)/sec, that is, both θ1 and θ2 advance π/2 radian = 90° for
every second. As mentioned above, although specific values of ω1 and ω2 are not
needed to determine the trajectory, they will make us easy to understand how θ1 and
θ2 change at specific time. Imagine a point starts at the origin at t = 0. At the
beginning, the point will move continuously to the upward right on the torus. At t =
1 second, the point will be at θ1 = π/2 and θ2 = π/2, the right side of the north pole
circle. At t = 2 seconds, the point will be at θ1 = π and θ2 = π, the inner equator on the
back. At t = 3 seconds, the point will be at θ1 = 3π/2 and θ2 = 3π/2, the left side of the
south pole circle. At t = 4 seconds, the point will be back to the origin where it was
before at t = 0 second. The following is a summary of the movement of the point at
these selected time in the above.

7 Chaos

232

Time t 0 1 2 3 4
──
θ1 0 π/2 π 3π/2 0
θ2 0 π/2 π 3π/2 0
Descriptive front, right back, inner left front
Location center north pole equator south pole center

2. r = ω1/ω2 is a rational number, i.e., r can be represented as r = p/q, where p and q

are integers with no common factors. Let us pick out specific values for an
illustration purpose: p = 2, q = 3; ω1 = (2π/3)/sec and ω2 = π/sec. The following
table shows how θ1 and θ2 change over time. Their values are computed by taking
modulus 2π, except that when the value is 2π, it is left as 2π.

Time t 0 1 2 3 4 5 6
───
θ1 0 2π/3 4π/3 2π 2π/3 4π/3 2π
θ2 0 π 2π π 2π π 2π

 We observe that one period is 6 seconds; during one period, θ1 completes two
revolutions and θ2 completes three revolutions. Fig. 7.15 is a rough sketch of the
trajectory. Details of the trajectory are not an important issue here. Rather, the key is
that the trajectory is a closed loop, that is, the solution is periodic.
 We now extend this observation to general case of r = p/q. When θ1 completes p
revolutions and θ2 completes q revolutions, they are back to the same starting point
for the first time. This is because p revolutions for θ1 and q revolutions for θ2 require
exactly the same amount of time; no smaller numbers of revolutions of θ1 and θ2 will
result in the same time since p and q do not have a common factor. Again, the
trajectory is a closed loop.

Fig. 7.15. A trajectory for r = ω1/ω2 = 2/3.

3. r = ω1/ω2 is an irrational number, i.e., r cannot be represented as r = p/q, where p

and q are integers. Examples of irrational numbers are √2 = 1.4142..., and π =
3.14159.... From the above case 2, if r = p/q, then after θ1 completes p revolutions
and θ2 completes q revolutions, they are back to the same starting point. If r cannot

7.5 Attractors

233

be represented in form of p/q, there are no integer revolutions for θ1 and θ2
complete at the same time. This implies that the moving point will never be back
where it started. Furthermore, by shifting any other location on the trajectory as an
initial point, we conclude that no part of the trajectory intersects to itself. That is,
the trajectory never repeats. This means that the moving point winds around
forever endlessly. This solution is called quasi-periodic.

7.5.4. Chaotic attractors

A steady state solution that is bounded and is none of the previous three types of
attractors - fixed-point, periodic, and quasi-periodic, is called a chaotic attractor or
a strange attractor. A solution is bounded when it is confined in a finite region in
the state space without diverging to infinity. The exact definition of these terms,
chaotic and strange attractors, sometimes varies by authors and has changed over
years. The basic concept is, however, that it exhibits an aperiodic and highly
irregular geometric pattern and also is sensitive to an initial condition. Aperiodic is
the term used when neither fixed-point, periodic, nor quasi-periodic apply.
 At the beginning of this chapter we described the typical features of chaotic
systems. There is no standard definition of chaos and it has been described in
different ways. One way is to define chaos as a dynamical system whose steady state
solution is a chaotic attractor. Sometimes the terms of "chaos" and "chaotic attractor"
are used interchangeably. Chaotic attractor often refers to the geometric
configuration in state space; chaos is used to describe the dynamics, that is, the
motion of the solution as time progresses on a chaotic attractor.
 As an example of a chaotic attractor, we will discuss the Lorenz attractor. In his
seminal article (Lorenz, 1963), he described chaotic dynamics for a toy model of
weather patterns. This was the first introduction of the concept of chaos in modern
history, although the term chaos was not born at that time.

Example 11. Lorenz attractor

The dynamical system is described by the following Lorenz equations:

x = σ(y - x)
y = rx - y - xz
z = xy - bz

Here σ, r, b > 0 are parameters related to the weather pattern model. We note that the
system is three dimensional and a relatively simple nonlinear system where the only
nonlinearity is for the quadratic terms xz and xy. We also note that x and y are
symmetric with respect to the origin, since the system stays the same when we
replace (x, y) with (-x, -y).
 Fig. 7. 16 (drawn by my graduate student Todd Posius) depicts the Lorenz
attractor for σ = 10, r = 28 and b = 8/3. Fig. (a) is an actual solution while Fig. (b)
plots only selected points with a fixed time interval. The attractor looks like a pair of
butterfly wings. The points C+ and C- are unstable fixed-point attractors. In the figure
we can see a typical behavior of a solution. The solution that starts near the origin
rises to the right, then plunges to near C-. After slow spiral outward, the state point

7 Chaos

234

moves back to the right, spirals around, moves back to the left, and so on indefinitely.
The motion is aperiodic and highly irregular for both its trajectory and speed. The
trajectories never intersect themselves. Solutions are sensitive to the initial
conditions; trajectories that start at slightly different points separate at exponential
rate. Long term prediction is essentially impossible due to the sensitivity to initial
conditions, which can only be known to a finite precision.

(a) (b)

Fig. 7.16. (a) The Lorenz attractor and a typical trajectory. (b) Only selected points in (a) are
plotted with a fixed time interval.

7.6 Bifurcations

So far we have focused on the study of dynamical systems for fixed values of
parameters. For example, for a dynamical system, xt+1 = rxt(1 - xt), where r is a
parameter, we would select a specific value for r, say, r = 2, then we can determine
the solutions or time series for various initial values of xt.
 What will happen if we change the value of the parameter, say, from r = 1.5 to 2,
2.5, 3, 3.5, and so on? This may add a new "dimension" to the problem. That is, we
can vary the value for the parameter, select different values for the initial condition,
and investigate the behaviors of the solutions as time progresses. In this way, we may
be studying an enormous number of cases since there are so many combinations for
different values of the parameter, initial conditions, and time. When we focus on only
steady-state solutions, the number of combinations will be much less since the time
factor will be eliminated. Furthermore, if initial conditions do not affect the
steady-state solutions, the problem will be much simpler. In such a case, we can focus
our attention on the relationship between the steady-state solution versus the
parameter. Whether initial conditions affect the steady-state solution depends on the

7.6 Bifurcations

235

dynamical systems.
 Generally, when we change a parameter value, say, from r = 2.5 to 2.6, the value
of the fixed-point steady-state solution, x∞ or simply x, may change quantitatively,
say, from x = 0.5 to 0.55. At some point of the parameter value, the solution may
qualitatively change from fixed-point to periodic, or periodic to chaotic. Or, in
certain cases, a fixed point may suddenly disappear or may be created.
 A bifurcation refers to a sudden, qualitatively different appearance in the solution
of a nonlinear dynamical system as a parameter is varied. The parameter value at
which a bifurcation occurs is called a bifurcation point. In a commonly used term,
a bifurcation means to divide into two branches. At a bifurcation in a dynamical
system, a fixed-point steady-state solution may split into a period-2 cycle steady-state
solution (which will be discussed soon). This means that the dynamical system with
an equilibrium solution will no longer have such a unique steady-state solution after
the parameter passes a certain value. Furthermore, a period-2 cycle solution may
change to period-4, period-4 to period-8, and so on, and finally, a periodic solution
may change to chaos at bifurcations.
 In the following, we will study the bifurcations using a relatively simple equation
called the logistic equation. This was published by Robert M. May (1976) which is
one of the major seminal articles in the history of chaos research. As May points out,
this is an example in which a simple equation can demonstrate complicated dynamics.

The logistic equation

The following one-dimensional discrete system is called the logistic equation or
logistic map:

xt+1 = rxt(1 - xt)

where r ≥ 0 is a parameter. This equation is quadratically nonlinear since rxt(1 - xt)
= rxt - rxt

2. The equation embodies a simple model of population fluctuations in an
ecological system. Here r represents the population growth rate and xt represents the
normalized population of a species of the t-th generation or year t. For example, if the
maximum real population is one million, dividing by one million will yield a
normalized value of the population between 0 and 1. The quadratic expression xt(1 -
xt) takes the maximum value of 1/4 at xt = 1/2. Hence, for xt+1 to stay within its range,
i.e., xt+1 ≤ 1, r must be r ≤ 4. (For example, if r = 5, then for xt = 1/2, xt+1 will be 1.25
which exceeds the upper bound 1.) Hereafter, we restrict r to 0 ≤ r ≤ 4.
 In this model the population level of the t + 1 generation, xt+1, is proportional to the
previous population xt. This is because the population of the current generation is
likely to be proportional to the number of matings and consequently the number of
resulting offspring. xt+1 is also assumed to be proportional to (1 - xt) since as one
approaches population saturation, the population tends to decrease due to worsening
environmental condition (such as lack of food). This also serves as a simple model
for other systems such as products in the market place.
 Fig. 7.17 is a sketch of the steady-state solution, x∞, versus the parameter r. This
figure turns out to be not as complicated as it would since it does not depend on the
initial value x0. (If it does, we would have to draw a three-dimensional figure for x∞
on r and x0.) Now let us go over on Fig. 7.17 for various values of r, starting from r = 0.

7 Chaos

236

 For convenience, we divide the interval of 0 ≤ r ≤ 4 into the following four
domains, I, II, III and IV:

Domain Interval of r Characteristic of Steady-State Solution, x∞
──
I 0 ≤ r < 1 x∞ = 0, that is, zero steady-state solutions represent the

species' extinction because of the low growth rate.

II 1 ≤ r < 3 Nonzero fixed-point steady-state solutions. The higher
the value of r, the higher the value of x∞; that is, the higher
the growth rate, the more the steady-state population. For
r = 2.9 the population x∞ saturates at a fixed-point
steady-state value x∞ ≈ 0.655. We note that so far
variations on r resulted in changes in the values of the
solutions, but not on the essential characteristics of the
solutions.

III 3 ≤ r < 3.57 As seen in Fig. 7.17, at r = 3 the steady-state solution
splits into two values of x∞, the first encounter of a
bifurcation. For example, say, r = 3.2, the steady-state
solution never reaches a fixed point; instead, x∞ alternates
between two values, e.g., xt = x21 ≈ 0.513, x22 ≈ 0.799, x23
≈ 0.513, x24 ≈ 0.799, and so on. This situation is easier to
understand in the time series depicted in Fig. 7.18 (a). We
recall that although only the discrete corner points of the
time-series graph are meaningful, it is a common practice
to connect these points with line segments for easier
recognition of the sequences. This type of oscillatory
solution, where xt repeats every two iterations, is called a
period-2 cycle.

As seen in Fig. 7.17, within the range of r for period-2
cycles, the higher the value of r, the further apart the two
values of x∞ are. For example, when r is close to 3, both
values of x∞ are close to the single fixed-point value of x∞
near r = 3. The difference between the two x∞ values
become larger when r increases. A graph like Fig. 7.17 is
called a bifurcation diagram.

When r increases more and reaches to r = 3.449, the
steady-state solution splits into four values of x∞. This is
called a period-4 cycle, where xt repeats every four
iterations. A time series of this situation is shown in Fig.
7.18 (b). For example, for r = 3.5, x∞ may repeat every
four iterations as, x∞ = 0.383, 0.827, 0.501, and 0.875.
Further period-doubling to cycles of period 8, 16, 32, ...,
occur as r increases as r = 3.544, 3.564, 3.569, and so on.
Successive bifurcations come faster and faster.

7.6 Bifurcations

237

Domain Interval of r Characteristic of Steady-State Solution, x∞
──
IV 3.57 ≤ r ≤ 4 Finally at r ≈ 3.57, the steady-state solution bursts into

the aperiodic, that is, chaos. Here the steady-state solution
x∞ changes from t to t + 1 irregularly (Fig. 7.18 (c)); in this
way, x∞ takes infinitely many different values, and the
whole regions of the bifurcation diagram are blacked in.
An intuitive interpretation of the behavior of the
steady-state solutions in terms of r may be given as
follows. Mathematically, r represents the degree of
nonlinearity of the system. The higher the value of r, the
higher the nonlinearity, thus resulting in more and more
complex solutions, that is, from fixed-point to periodic
and further to chaos.

The story, however, does not end here. When r is
further increased to, for example, r ≈ 3.68 or 3.83, in the
middle of chaos, cyclic solutions suddenly return.
Period-doubling bifurcations begin with odd periods such
as 3, 6, 12, ..., or 7, 14, 28, Successive bifurcations
come faster and faster as before, and then breaking off
once again to renewed chaos. Although this fine structure
is not shown in Fig. 7.17, a magnified diagram resembles
the earlier bifurcations.

Fig. 7.17. A rough sketch for the steady-state solution x∞ versus the parameter r for the logistic
equation: xt+1 = rxt(1 - xt).

7 Chaos

238

Fig. 7.18.Time series for period-2, period-4, and chaotic steady-state solutions: X∞ versus t.

Incidentally, the fundamental idea of chaos control techniques is to apply a very
small feedback perturbation to a system-wide parameter such as r or to a system
variable such as xt. This process makes the sensitivity to initial conditions or
perturbations inherent in the chaos work for us. In comparison to linear systems
where small controls yield small results, chaos enables small controls to have
enormous effects.

7.7 Fractals

A fractal is a geometric object that has the following properties:

1. Recursive self-similarity. Any magnification of a part of the object has the same

or similar shape as the original shape on arbitrarily small scale. As a result, a
fractal is an extremely irregular curve or surface formed of an infinite number of
similarly irregular sections.

2. A non-integer, that is, fractional dimension. Instead of an integer dimension

such as 1, 2 or 3, a fractal may have a fractional dimension such as 1.26 or 2.05.

 We may wonder why fractals are related to chaos. Fractals are geometric objects
of static images, while chaos is a dynamical system in which the motion of a point is
our interest. It turns out that fractals and chaos are closely related. Almost all chaotic
(strange) attractors are fractals. Fractals also occur in bifurcation diagrams as studied
at the end of the last section. In the following, we discuss fundamental basic ideas of
these properties of fractals using a simple example, called the von Koch curve.

The von Koch curve

7.7 Fractals

239

Construction of the von Koch curve is illustrated in Figs. 7.19 and 7.20. Fig. 7.19
shows the basic operation for constructing the curve. Given a line segment, we take
the middle third as the base of an equilateral triangle and replace it with the other two
sides of the triangle. This basic operation is repeated recursively for newly generated
line segments to finally obtain the von Koch curve as is shown in Fig. 7.20.

Fig. 7.19.The basic operation for constructing the von Koch curves. (a) An equilateral triangle
with three sides u (base), v and w. (b) Consider the middle third of a line segment as side u, and
replace it with the two other sides v and w.

Fig. 7.20.Successive construction of the von Koch curve, starting from the top to the von Koch
curve at the bottom.

7 Chaos

240

In the von Koch curve shown in the bottom of Fig. 7.20, we see the part inside of the
larger ellipse has the same shape as the original, that is, the part is a miniature of the
original. Similarly, the part inside the smaller ellipse again has the same shape as the
one inside the larger ellipse, which in turn the same shape as the original shape.

That is, this is recursive self-similarity for fractals. In the following, we will discuss
fractional dimensions, the second property for fractals, using the von Koch curve as
an example.

Fractal dimensions

We have been using the term "dimension" to represent a geometric extent. In
Euclidean (Cartesian) space, the dimension is 1 when the space is a line, it is 2 for a
plane, and it is 3 for a solid. Extending this idea slightly, a dimension may be said to
be the minimum number of coordinates or variables needed to represent every point
in space. For example, the dimension of a smooth curve is 1, since every point in the
space (i.e., on the curve) can be represented by one number, the distance along the
curve from its origin (Fig. 7.21).

Fig. 7.21. The dimension of a smooth curve is 1.

 More generally, a dimension can be some kind of measure that characterizes the
space-filling properties for a set of points in space. Using this broader interpretation
of dimensions, we can define other types of dimensions including fractional ones.
The generic term that allows fractional values is fractal dimension. Different types
of dimensions can be employed within fractal dimensions by using different
definitions. Now we will discuss what dimension is appropriate for the von Koch
curve. We claim that the dimension is neither 1 nor 2, but fractal. In Fig. 7.19 (b),
we see that the total length of line segments is increased by 4/3 times by this
operation. This is because the middle 1/3-long section is replaced by 2/3-long
hat-shaped sections. Therefore, suppose that the length of the initial line in Fig. 7.20
is 1. Then the second shape has total length of 4/3, the third pattern has (4/3)2, ..., and
n-th pattern has (4/3)n-1. Hence, the total length of the von Koch curve will approach
(4/3)∞ = ∞ when n → ∞. As we saw before, the von Koch curve is recursively
self-similar on an arbitrarily small scale. Hence, the length of every point on the
curve is infinitely far from every other. This suggests that the dimension of the curve
cannot be 1, since every point on the curve cannot be represented by one number.
The dimension does not appear to be 2, since the curve does not have any area. To
solve this problem, we introduce a new concept called similarity dimension, a simple
fractal dimension.

7.7 Fractals

241

Similarity dimension

Consider partitioning a d-dimensional shape, such as a line segment, square or cube
in Euclidean space, into p similar shapes, scaled down by a factor of r. We see the
relationship among d, p, and r is p = rd (Fig. 7.22). Although cases for d = 3 are not
shown in Fig. 7.22, the same relationship holds for d = 3; for example, when r = 2,
a cube is divided into p = rd = 23 = 8 scaled-down cubes.
 We extend dimension d that satisfies the relationship p = rd from integer to include
fractal dimensions, called similarity dimensions. By taking the logarithms of p = rd
with any base, we have: log p = d log r, or by arbitrarily choosing the natural
logarithm, ln, we have ln p = d ln r. By explicitly writing in terms of d, we define
similarity dimension as:

d = ln
ln

p
r

Fig. 7.22.Partitioning a d-dimensional shape into p similar shapes, scaled down by a factor of
r. We see that p = rd holds.

 In case of the von Koch curve, r = 3 and p = 4. Therefore, the similarity dimension
of the von Koch curve is (ln 4)/(ln 3) = 1.26186. As mentioned earlier, other fractal
dimensions can be defined, and dimensions of chaotic shapes, such as chaotic
attractors and bifurcation diagrams, can be determined.
 The Mandelbrot set, impressive fractal images, has been developed by using
computer graphics around 1980 (see for example Gleick, 1987 for colorful images).
This set together with the concept of fractal geometry were major historical
developments in the study of chaotic systems.

7 Chaos

242

7.8 Applications of Chaos

Practical applications of chaos are new and many potential ones are being
investigated. In this section, we will briefly discuss the basic ideas of various types
of chaos applications. For easy understanding, we classify the application types into
the following four types.

1. Control and stabilization
2. Synthesis
3. Analysis and prediction
4. Hybrid systems

After the discussions of these four types of chaos applications, we will list sample
potential application areas in various disciplines.

Control and stabilization

The extreme sensitivity of nonlinear or chaotic systems to tiny perturbations can be
manipulated to stabilize or control the systems. The fundamental idea is that tiny
perturbations can be artificially incorporated to either control or stabilize a large
system - to direct a chaotic system into a desired state (control) or to keep it stable
(stabilization). Typically such control or stabilization operations require much
smaller amounts of energy than for nonchaotic systems. A good example of this type
of application is the following NASA satellite control.

NASA satellite control. In 1978 a spacecraft called the International Sun-Earth
Explorer-3 (ISEE-3) was launched toward a halo orbit around a Sun-Earth libration
point. In 1983, ISEE-3 was retargetted for an interception with a comet million miles
across the solar system. NASA engineers performed this orbital acrobatics by a
combination of propulsive maneuvers, lunar swingbys, and the effective use of solar
perturbations. Although the term "chaos control" did not exist at that time, this event
was a demonstration of the idea. Through clever burns of fuel, the engineers
exploited the chaotic sensitivity to perturbations exhibited by the three celestial body
problem to use small amounts of fuel (all that was available) to nudge the spacecraft
near the desired comet to be investigated. If the system were nonchaotic, large
perturbations and subsequent large expenditures of fuel would have made such a
mission impossible to achieve.

 Other potential applications of small carefully chosen chaos control interventions
include more efficient airplane wings, power delivery systems, turbines, chemical
reactions in industrial plants, combustion, implantable heart defibrillators, brain
pacemakers, conveyor belts, and economic planning.

Synthesis

Artificially generated chaotic outputs may be applied to certain types of problems to
make the systems, either chaotic or non-chaotic, work better. The fundamental idea

7.8 Applications of Chaos

243

is that regularity is not always the best, depending on the types of the problems.
Artificially stimulated chaotic brain waves may some day help break up epileptic
seizures by keeping the brain away from undesired periodicity. We can synthetically
generate chaotic output for consumer products, such as air conditioners and fan
heaters, to increase natural feeling for human comfort.
 Two identical (called "synchronized") sequences of chaotic signals can be used for
encryption by superposing a message on one sequence. Only a person with the other
sequence can decode the message by subtracting the chaotic masking component. In
communications, an artificially generated chaotic signals can follow a prescribed
sequence, thus enabling to transmit information. Artificially generated chaotic
fluctuations can be used to stimulate trapped solutions such that they escape from
local minima for optimization problems or learning as in neural networks.

Analysis and prediction

When we can successfully model a chaotic system, it can be used to analyze the time
series of the system. It then can lead to better understanding or more efficient design
of the system. Or, it can be used for prediction or detection of system's behavior in the
near future. For example, signals of a system, such as machine operations or human
body, are carefully analyzed to detect a near future failure, thus avoiding a much
more costly repair process. Other potential application domains include contagious
disease incidence, cardiology, ecology, financial market, economy, fluid flow,
weather, and climate such as the El Niño oscillation.

Hybrid systems

Other areas of AI, such as (artificial) neural networks, genetic algorithms, and fuzzy
logic can be employed together with chaotic systems, as, e.g., neural networks +
chaos, or neural networks + fuzzy + chaos. The fundamental concept of such hybrid
systems is to complement each other's strengths, thus creating new approaches to
solve problems.

Neural networks + Chaos Neural networks are modeled on biological neural
networks or the human brain, and the brain exhibits chaotic behavior. Hence, it is
natural to incorporate chaos to the study of neural networks. The chaotic biological
system is capable of performing complex tasks such as speech production, visual and
audio pattern recognition, and motor control, with flexibility. These tasks are hardly
achieved by regular engineering systems. Artificial chaotic systems have been
incorporated with the backpropagation model and associative memory. From
engineering point of view, such chaotic neural network may be applied for prediction
and control. From a scientific point of view, such network might lead to a better
understanding of a biological neural network where the normal brain exhibits chaos.
Also, as discussed before, artificially generated chaotic fluctuations can be used to
escape from local minima for certain types of neural networks.

Genetic algorithms + Chaos Potential applications include the use of chaos as a tool
to enhance genetic algorithms. For example, certain chaotic functions, rather than
random numbers, might be used in the processes of crossover, etc. This may alter the

7 Chaos

244

characteristics of genetic algorithm solutions, hopefully toward more desirable
situations such as avoiding premature convergence. This may be interpreted as the
use of artificially generated chaotic functions to escape from local minima.
 Chaos modeling of genetic algorithms can be another example of the potential use
of chaos as a tool to analyze genetic algorithms. Genetic algorithms, especially for
those that generate chaotic solutions, may be analyzed by a chaos model. Conversely,
genetic algorithms can be a useful tool to describe a complex chaotic system where
common mathematical modeling is difficult.

Fuzzy logic + Chaos Fuzzy systems are suitable for uncertain or approximate
reasoning, especially for systems for which a rigorous mathematical model is
difficult to derive. They also allow us to represent descriptive or qualitative
expressions. Fuzzy logic may be employed to describe a complex chaotic dynamical
system. From an application point of view, control is probably the most promising
domain of chaos-fuzzy hybrid systems.

Application areas

The following table shows sample potential application areas of chaos in various
fields.

Field Applications
──
Engineering Vibration control, stabilization of circuits, chemical

reactions, turbines, power grids, lasers, fluidized
beds, combustion and many more.

Computers Switching of packets in computer networks.
Encryption. Control of chaos in robotic systems.

Communications Information compression and storage.Computer
network design and management.

Medicine and Biology Cardiology, heart rhythm (EEG) analysis, prediction
and control of irregular heart activity (chaos aware
defibrillator)

Management and Finance Economic forecasting, restructuring, financial
analysis and market prediction and intervention.

Consumer Electronics Washing machines, dishwashers, air conditioners,
heaters, mixers.

Further Reading

Strogatz's book is easily understandable and well-written on dynamical systems and
chaos. Gleick's book is non-technical but entertaining. Lorenz's and May's are
seminal articles cited in this chapter.

K.T. Alligood, T.D. Sauer and J.A. Yorke, Chaos： An Introduction to Dynamical
Systems, Springer, 2000.

Further Reading

245

A.B. Çambel, Applied Chaos Theory: A Paradigm for Complexity. Academic Press,
San Diego, Calif, 1993.

W. Ditto and T. Munakata, "Principles and Applications of Chaotic Systems,"
Communications of the ACM, Vol. 38, No. 11, 96-102, Nov., 1995,.

J. Gleick, Chaos: Making a New Science, Viking, 1987.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Springer,1983, 1990.

A. Lasota and M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of
Dynamics, Springer, 1998.

E.N. Lorenz, "Deterministic non-periodic flow," Journal of the Atmospheric
Sciences, 20, 130-141, 1963.

R.M. May, "Simple Mathematical Models with Very Complicated Dynamics,"
Nature, Vol. 261, 459-467, June, 1976.

E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 1993.

E. Ott, T. Sauer, and J.A. Yorke, Coping with Chaos: Analysis of Chaotic Data and
the Exploitation of Chaotic Systems, Wiley, N.Y., 1994.

T.S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems,
Springer, 1989.

S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, 1994.

Journals

There are many journals that carry articles in chaos including the following.

Chaos, American Institute of Physics.

Chaos, Solitons and Fractals, Elsevier Science.

Nonlinearity, Institute of Physics (UK), London Mathematical Society.

International Journal of Bifurcation and Chaos, World Scientific Publishing Co.,
Singapore.

 Index

Activation function, neural networks, 9
Adaptive system, 7
AI (see Artificial intelligence),
Allele, 86, 109
Analysis and prediction, applications

of chaotic systems, 243
Aperiodic, chaos, 223
Applications, 162-163, 178, 191
 chaos, 206, 223, 206-245
 fuzzy systems, 156-157
 genetic algorithms, 85-119
 neural networks, 7
 rough sets, 168-171
Approximation space, rough sets, 171,

170-176
Architecture, Boltzmann machine, 70
Architecture, neural networks, 9
Artificial neural network (ANN), 7
Artificial intelligence (AI), 1
Associative memory, neural network,

40
Associativity, fuzzy set, 127
Attractor, 222, 227, 227-233
Attributes, rough sets, 168
Autonomous dynamical system, 210, 214

Backpropagation, neural networks,

7-35
 backward propagation of error

corrections, 12
 epoch, 12

 feedforward, 38, 42
 generalized delta rule, neural

networks, 17
 hidden layer, 9
 input layer, 9
 learning rate, 18
 momentum rate, 20
 output layer, 10
 target pattern, 12
Backward propagation of error

corrections, backpropagation, 12
Basin of attraction, chaos, 228
Bifurcation diagram, chaos, 236
Bifurcation point, chaos, 235
Bifurcation, chaos, 235, 234-238
Binary input, neural network, 39
Binary relation, from a set to a set,

165
Binary relation, ordinary (nonfuzzy),

131
Bipolar input, neural network, 39
Block, partition, 167
Boltzmann machine 69
 architecture, 70

clamped phase, 75, 77
clustering, 72
derivation of delta-weights, 81
free-running phase, 75, 77
hidden neuron, 70
learning process, 73
negative phase, 75, 77

 Index

248

Boltzmann machine (cont.)
network energy, 73
positive phase, 75, 77
probabilities of individual neurons, 74
problem description, 71
self-supervised learning, 69
supervised learning, 69
testing algorithm, 79

 unsupervised learning, 69
unsupervised learning algorithm, 76

 visible input neuron, 70
 visible neuron, machine 70
 visible output neuron, 70
Boundary region, rough sets, 172, 183
Bounded solution, chaos, 223

Cartesian product, 130, 122, 163, 165
Certain concept, rough sets, 174
Chaos, 206, 223, 206-245 (see also

 Dynamical system)
 aperiodic, 223
 applications, 62-163, 178, 191

attractor, 222, 227, 227-233
 basin of attraction, 228
 bifurcation, 235, 234-238
 bifurcation diagram, 236
 chaotic attractor, 233
 dynamical systems, 209-223
 fractal, 238
 logistic map, 235
 period-2 cycle, 236
 period-4 cycle, 236
 period-doubling , 236
 strange attractor, 223
Chaotic attractor, 233
Chaotic hybrid system, 243
Chaotic system, 206, 206-245
Chromosomes, genetic algorithms, 85
Clamped phase, Boltzmann machine,

75, 77
Classification,
 applications of genetic algorithm, 96
 applications of neural networks, 33
Classifier system, genetic algorithms,

118
Clustering, input patterns, neural

networks, 63, 72

Cobweb, dynamical systems, 221
Commutativity, fuzzy set, 127
Competitive learning, Kohonen

network, 58, 61
Complement, fuzzy set, 126
Composite relation,
 relation, fuzzy, 132, 135
 ordinary (nonfuzzy), 132
Composition,
 fuzzy, 136, 137
 ordinary (nonfuzzy), 132
Concentration, fuzzy set, 128
Concepts, rough sets, 169
Condition attributes, rough sets, 168
Confidence factor, rough sets, 174
Connectionist model, neural networks,

 7
Content-addressable memory, neural

network, 40
Continuous dynamical system, 212
Continuous input, neural network, 39
Continuous membership function, fuzzy

set, 124, 145
Control and stabilization, applications

of chaotic systems, 242
Control rules, fuzzy, 143
Control
 fuzzy, 143-156
 applications of genetic algorithm, 96
 applications of neural networks, 33
Core, rough sets, 187
Correct solution, genetic algorithm, 87
Crisp set (see Ordinary set), 121
Crossing site, genetic algorithm, 89
Crossover breeding, genetic algorithm,
 89

Darwinian evolution, genetic algorithms,
 87
Data compression, Kohonen network,
 83
Data mining, 162
de Morgan's laws, fuzzy set, 127
Decision attributes, rough sets, 168
Decision table, rough sets, 168
Decisions, rough sets, 168
Definable set, rough sets, 171

Index

249

Definable, rough sets, 174
Defining length, schema, genetic

algorithms, 109
Defuzzification, 150
Degree of membership, fuzzy-set
 element, 123
Dempster-Shafer theory, 203
Dependency, rough sets, 184
Dependent set with respect to decision

attribute, rough sets, 186
Dependent set, rough sets, 186
Dependent variable, dynamical systems,

210
Derivation of delta-weights, Boltzmann

machine, 81
Difference equation, 210
Dilation, fuzzy set, 129
Discrete dynamical system, 210
Discrete membership function,
 fuzzy set, 124, 145
 fuzzy variable, 145
Discretization, rough sets, 189
Discriminant analysis, 203
Discriminant index, rough sets, 185
Distributive laws, fuzzy set, 1247
Dynamical system, 210, 210-218 (see

also Chaos)
 attractor, 222, 227, 227-233
 autonomous, 210, 214
 basin of attraction, 228
 chaotic attractor, 233
 cobweb, 221
 diffrence equation, 210
 equilibrium solution, 221, 222, 226
 fixed point, 222, 226
 fixed-point attractor, 227
 flow, 219
 linearity, 211, 213
 map, 210
 nonautonomous, 210, 214
 nonlinearity, 211, 213
 orbit, 219
 periodic attractor, 229
 phase space, 218
 quasi-periodic, 230
 recurrence equation, 210
 repeller, 222

 representation of, 210-218
 saddle point, 228
 solution, 210, 212
 state space, 218
 state variable, 218
 time series, 209
 trajectory, 219

Element, fuzzy set, 125
Elementary set, rough sets, 171
Energy function, Hopfield network, 44
Entity, rough sets, 168, 178
Entropy, 196
Epoch, backpropagation, 12
Equality, fuzzy set, 125
Equilibrium solution, dynamical

systems, 221, 222, 223, 226
Equivalence classes, 167, 169
Equivalence relation, 165, 178
Evolution, genetic algorithms, 87
Evolutionary computing, 85
Example, rough sets, 168
Excitatory synapse, neural networks, 43
Expected count, genetic algorithm, 92
Extended fuzzy if-then rules tables, 152
Externally definable, rough sets, 175
Externally undefinable, rough sets, 175

Feedbackward neural network, 38, 42
Feedforward neural network, 38, 42
Feedforward, backpropagation, 12, 38
Firing strength, fuzzy rule, 149
Fitness probability, genetic algorithm,
 92
Fitness, genetic algorithm, 88
Fixed point, dynamical systems, 222,

226
Fixed-point attractor, chaos, 227
Flow, dynamical systems, 219
Fractal dimension, 240
Fractal, 238
Free-running phase, Boltzmann

machine, 75, 77
Fully-interconnected neural network, 42
Fundamental theorem of genetic

algorithms, 113
Fuzzification, 149

 Index

250

Fuzzy binary relation (see Fuzzy
relation), 130-138

Fuzzy composite relation, 132, 135
Fuzzy composition, 136, 137
Fuzzy control, 143-156
 control rules, 143
 defuzzification, 150
 extended fuzzy if-then rules tables,

 152
 firing strength, fuzzy rules, 149
 fuzzification, 149
 fuzzy if-then rule table, 146
 fuzzy inference, 140-143, 149
 fuzzy variable, 143
 input variable, 143
 output variable, 143
 weight, fuzzy rules, 149
Fuzzy graph, 134
Fuzzy if-then rule table, 146
Fuzzy implication, 139
Fuzzy inference, 140-143, 149
Fuzzy logic, 139-143
 applications
 composition, 132, 137
 implication, 139
 induction, 137
 inference, 137-139, 144
Fuzzy relation defined on ordinary

sets, 133-138
Fuzzy relation matrix, 134
Fuzzy relation, 130-138
 composite relation, 132
 composition, 132

fuzzy relation defined on ordinary
sets, 133-138

 fuzzy relations derived from fuzzy
sets, 138

 fuzzy graph, 134
 max-min product, 135
 relation matrix, 134
Fuzzy relations derived from fuzzy

sets, 138
Fuzzy set, 123-130

associativity, 127
commutativity, 127
complement, 126
concentration, 128

de Morgan's laws, 127
degree of membership, 123
dilation, 129
distributive laws, 127
element, fuzzy set, 125
equality, fuzzy set, 125
fuzzy singleton, 125
idempotent, 127
identity, fuzzy set, 128
intersection, fuzzy set, 126
involution (double complement), fuzzy

set, 127
membership function, 123, 124
membership value, 124
normal (normalized) fuzzy set, 129
normalization, fuzzy set, 129
singleton, fuzzy set, 125
subset, fuzzy set, 125
support, fuzzy set, 125
union, fuzzy set, 126

Fuzzy singleton, 125
Fuzzy systems, 156-157
Fuzzy systems, hybrid, 156-157
Fuzzy variable, 143

Gain ratio, ID3, 197
Gain, ID3, 197
Gene, genetic algorithms, 86, 109
General solution, dynamical systems, 210,

212
Generalized delta rule, neural networks, 17
Genetic algorithm, 85-119

allele, 86, 109
application, 102
classifier system, 118
correct solution, 87
crossover breeding, 89
crossing site, 89
defining length, schema, 109
expected count, 92
fitness, 88
fitness probability, 92
fundamental theorem, 113
gene, 86, 109

 genetic programming, 116-117
index list, 104
index table, 104

Index

251

input-to-output mapping, 95
mating pool, 89
mutation, 86, 89
normalized fitness, 92
order, schema, 109
partially matched crossover (PMX)

operation, 107
 population, 88

premature convergence, 107
random mutation, 89
recombination breeding, 89
reproduction, 89
schema, 108
schema theorem, 113
similarity template, 108

 solution, 87
total fitness, 91

Genetic programming, 116-117
Genotype, genetic algorithms, 86
Global-to-local approach, rough sets,

190
Grade of membership, fuzzy-set element,

 123
Graded learning, neural network, 59

Hidden layer, backpropagation, 9
Hidden neuron, Boltzmann machine,

70
Hopfield network, 41-58
 energy function, 44
 Lyapunov function, 44
Hopfield-Tank model, 46-49
 basic equations, 46
 iteration process, 47
 n-queen, 49
 neural networks, 45-55
 one-dimensional layout, 46
 traveling salesman probem, 55
 two-dimensional layout, 48

ID3, 195-202
 entropy, information theory, 196
 gain, 197
 gain ratio, 197

 indetermination, probability theory,
196

 measure of uncertainty, probability

theory, 196
 outcome space, probability theory,

195
 random variable, probability theory, 195
 split info, 196
Idempotent, fuzzy set, 127
Identity, fuzzy set, 128
Implication,
 fuzzy, 139
 ordinary, 139
Inconsistent information table, rough sets,

170
Independent set with respect to decision

attribute, rough sets, 186
Independent set, rough sets, 186
Independent variable, dynamical systems,

210
Indetermination, probability theory, 196
Index list, genetic algorithm, 104
Index table, genetic algorithm, 104
Indiscernibility relation, rough sets, 171
Indispensable with respect to decision

attribute, rough sets, 188
Indispensable, rough sets, 187
Indistinguishable element, rough sets,

171
Indistinguishable, rough sets, 171
Induction,
 fuzzy set, 137
 partition, 167
Information table, rough sets, 168
Inhibitory synapse, neural networks, 43
Input layer, backpropagation, 9
Input variable, fuzzy control, 143
Input-to-output mapping, 95
Internally definable, rough sets, 175
Internally undefinable, rough sets, 175
Intersection, fuzzy set, 126
Involution (double complement), fuzzy

set, 127
Isolated solution, chaos, 228

Knowledge representation system, rough

 sets, 176
Kohonen layer, neural networks, 59
Kohonen (neuron network) model, 59
 clustering of input patterns, 63

 Index

252

Kohonen model (cont.)
 competitive learning, 58, 61
 data compression, 83
 Kohonen neuron, 59
 Kohonen layer, 59
 learning vector quantization, 63
 radius, 60

Layered neural network, (see Multi-

layered neural network), 9, 37
Learning process, Boltzmann machine,

 73
Learning rate, backpropagation, 18
Learning vector quantization, Kohonen

network, 63
Limit cycle, chaos, 228
Linear dynamical system, 154, 156
Linearity, 211, 213
Linearly inseparable function, 30
Linearly separable function, 30
Local minimum, neural networks, 27
Local-to-global approach, rough sets,

 190
Logistic equation, chaos, 235
Logistic map, chaos, 235
Lower approximation, rough sets, 171
Lyapunov function, Hopfield network,

44

Machine learning, applications of

genetic algorithm, 95
Map, dynamical systems, 210
Mating pool, genetic algorithm, 89
max-min product, fuzzy relation, 135
Measure of uncertainty, probability

theory, 196
Membership function, fuzzy set, 123,

124
Membership value, fuzzy set, 124
Minimal period, dynamical systems,

214
Minimal set, rough sets, 186
Momentum rate, backpropagation, 20
Multilayered neural network, 37
Mutation, genetic algorithm, 86, 89

Negative phase, Boltzmann machine,

75, 77
Negative region, rough sets, 172, 183
Network energy, Boltzmann machine,

73
Neural net, 7
Neural network (NN), 7
 activation function, neural networks, 8

applications, 32
 architecture, 9
 associative memory, 40
 backpropagation, 9-38
 backward propagation of error

corrections, 12
 binary input, 39
 bipolar input, 39
 content-addressable memory, 40
 continuos input, 39
 epoch, 12
 excitatory synapse, 43
 feedbackward, 38, 42
 feedforward, 12, 38, 42
 generalized delta rule, 17
 hidden layer, 9
 inhibitory synapse, 43
 input layer, 10
 layered, 9, 37
 learning rate, 18
 local minimum, 27
 momentum rate, 20
 multilayered, 9, 37
 neuron, 5
 nonrecurrent, 38
 output layer, 10
 perceptron, 28
 recurrent, 17, 38, 42
 representation , perceptron, 28
 sigmoid function, 9, 47, 53
 sigmoid function with threshold, 9
 supervised learning, 12, 38
 synapse, 8, 43
 target pattern, 12
 transfer function, 8
 unsupervised learning, 38
Neuron, 7
Nonautonomous dynamical system,

210, 214
Nonlinear dynamical system, 154, 156

Index

253

Nonlinearity, 211, 213
Non-recurrent neural network, 38
Normal (normalized) fuzzy set, 129
Normalization, fuzzy set, 129
Normalized fitness, genetic algorithm,

92
n-queen problem, 49

Object, rough sets, 168, 178
Optimization, Hopfield-Tank model,

 49-58
Orbit, dynamical systems, 219
Order,
 differential equations, 212

 schema, genetic algorithms, 109
Ordinary set, 121
Outcome space, probability theory, 195
Output layer, backpropagation, 10
Output variable, fuzzy control, 143

Partially matched crossover (PMX)

operation, genetic algorithm, 107
Particular solution, dynamical systems,

210, 212
Partition, 167, 168, 169
Pattern classification, applications of

genetic algorithm, 96
PDP (Parallel Distributed Processing)

model, 7
Perceptron, (simple), 28
Period of a solution, chaos, 228
Period-2 cycle, chaos, 236
Period-4 cycle, chaos, 236
Period-doubling, chaos, 236
Periodic attractor, chaos, 229
Periodic solution, 228
Phase point, dynamical systems, 219
Phase space, dynamical systems, 218
Phenotype, genetic algorithms, 86
Population, genetic algorithm, 88
Positive phase, Boltzmann machine, 75, 77
Positive region, rough sets, 172, 183
Prediction,
 applications of genetic algorithm, 96
 applications of neural networks, 33
Premature convergence, genetic

algorithm, 107

Probabilities of individual neurons,
Boltzmann machine, 74

Problem description, Boltzmann
machine, 71

Product of partitions, 169

Quasi-periodic, chaos, 230

Radius, Kohonen network, 60
Random mutation, genetic algorithm, 89
Random variable, probability theory, 195
Recombination breeding, genetic

algorithm, 89
Recurrence equation, 210
Recurrence relation, 210
Recurrent neural network, 17, 38, 42
Reduct, rough sets, 186
Reinforcement learning, neural network,

59
Relation matrix, fuzzy, 134
Relation, from a set to a set, 165
Relation, fuzzy, 130-138
Relation, ordinary (nonfuzzy), 131
Relative core, rough sets, 188
Relative reduct, rough sets, 186
Repeller, dynamical systems, 222
Representation, perceptron, 28
Reproduction, genetic algorithm, 89
Rough set, 175, 162-204
 applications, 162-163, 178, 191

approximation space, 171
 attributes, 168
 boundary region, 172, 183
 certain concept, 174

concepts, 169
 condition attributes, 168
 confidence factor, 174
 core, 187
 decision attributes, 168

decisions, 168
 definable, 174

dependency, 184
dependent set, 186

 dependent set with respect to decision
attribute, 186

discretization, 189
discriminant index, 185

 Index

254

Rough set (cont.)
 elementary set, 171
 entity, 168
 equivalence classes, 167, 169
 example, 168
 inconsistent information table, 170
 independent set, 186
 independent set with respect to

decision attribute, 186
information table, 168
indispensable, 187
indispensable with respect to

decision attribute, 188
 indistinguishable element, 171

indiscernibility relation, 171
 knowledge representation system, 176
 lower approximation, 171
 minimal set, 186
 negative region, 172, 183
 objects, 168
 partition, 167, 169
 positive region, 172, 183
 reduct, 186
 relative core, 188

relative reduct, 186
 significance, 185
 uncertain concept, 174
 universe, 168
 upper approximation, 171
Roughly definable, 175
Roughly dependent, 184

Saddle point, chaos, 228
Schema theorem, genetic algorithms,

113
Schema, genetic algorithms, 108
Self-organization, neural network, 59
Self-supervised learning, Boltzmann

machine, 69
Sigmoid function with threshold, neu-

ral-network activation function, 9
Sigmoid function, neural-network

activation function, 9, 47, 53
Significance, rough sets, 185
Similarity dimension, 241
Similarity template, genetic

algorithms, 108

Simulated annealing 63
algorithm, 65
example, TSP, 66

Singleton, fuzzy set, 125
Soft computing, 5
Solution,
 dynamical systems, 210, 212
 genetic algorithm, 87
Split info, ID3, 197
Stable solution, dynamical systems,

222
State point, dynamical systems, 219
State space, dynamical systems, 218
State variable, dynamical systems,

218
Steady state, dynamical systems, 210,

212
Steepest descent method, 18
Strange attractor, chaos, 223
Subset, fuzzy set, 125
Supervised learning, neural networks,

38
Supervised learning, Boltzmann

machine, 69
Supervised learning, neural networks,

12, 38
Support, fuzzy set, 125
Symbolic AI, 2
Symbols for
 fuzzy systems, 156-157
 rough sets, 168-171
Synapse, neural network, 8, 43
Synthesis, applications of chaotic

systems, 242

Target pattern, backpropagation, 12
Testing algorithm, Boltzmann

machine, 79
Time series, dynamical systems, 209
Time waveform, dynamical systems, 209
Time-periodic, dynamical systems, 214
Torus, chaos, 230
Total fitness, genetic algorithm, 91
Totally dependent, rough sets, 184
Totally independent, rough sets, 184
Totally non-definable, rough sets, 175
Totally undefinable, rough sets, 175

Index 255

Trajectory, dynamical systems, 219
Transfer function, neural networks, 8
Transient state, dynamical systems, 210, 212
Traveling salesman problem (TSP),
 application of genetic algorithm, 102
 application of the Hopfield-Tank model,

55
 simulated annealing, 66
Triangular membership function, fuzzy

variable, 145

Uncertain concept, rough sets, 174
Undefinable, rough sets, 175
Union, fuzzy set, 126
Universe, rough sets, 168
Unstable solution, dynamical systems, 222

Unsupervised learning algorithm,
Boltzmann machine 76

Unsupervised learning, 38, 59
Unsupervised learning, Boltzmann

machine 69
Upper approximation, rough sets, 171

Visible input neuron, Boltzmann

machine, 70
Visible neuron, Boltzmann machine 70
Visible output neuron, Boltzmann

machine, 70
von Koch curve, 238

Waveform, dynamical systems, 209
Weight, fuzzy rule, 149

TEXTS IN COMPUTER SCIENCE (continued from page ii)

Kizza, Ethical and Social Issues in the Information Age, Second
Edition

Kozen, Automata and Computability

Kozen, Theory of Computation

Li and Vitányi, An Introduction to Kolmogorov Complexity and Its
Applications, Second Edition

Merritt and Stix, Migrating from Pascal to C++

Munakata, Fundamentals of the New Artificial Intelligence:
Neural, Evolutionary, Fuzzy and More, Second Edition

Nerode and Shore, Logic for Applications, Second Edition

Pearce, Programming and Meta-Programming in Scheme

Revesz, Introduction to Constraint Databases

Schneider, On Concurrent Programming

Skiena and Revilla, Programming Challenges: The Programming
Context Training Manual

Smith, A Recursive Introduction to the Theory of Computation

Socher-Ambrosius and Johann, Deduction Systems

Stirling, Modal and Temporal Properties of Processes

Zeigler, Objects and Systems

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	back-matter.pdf

